首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为了解决C/C复合材料CVI(Chemical Vapor Infiltration,CVI)制备工艺中大量实验数据的有效存储及合理利用问题,设计开发了C/C复合材料实验数据库系统平台,利用SQL Server作后台数据仓库,VC 作平台系统开发,以ADO对象作数据库连接技术,从工艺方法、性能分析、组织结构等方面对实验数据整理分类,并利用Matlab引擎技术整合CVI工艺优化仿真程序,对材料制备工艺进行模拟和优化,该系统平台有助于缩短C/C复合材料制备周期,提高生产效率,降低生产成本。  相似文献   

2.
论述了化学液相气化渗透工艺(简称CLVI)制备C/C复合材料的基本原理、工艺特点,分析了该技术的沉积机理、热解碳的形成条件和组织结构与致密化环境之间的关系,以及沉积温度和石墨化温度对材料力学性能的影响,概述了该技术在模拟方面的研究现状,展望了其发展前景并提出了自己的观点.  相似文献   

3.
C/C 复合材料热梯度CVI 工艺的数值模拟研究   总被引:10,自引:0,他引:10       下载免费PDF全文
TCV I(热梯度CV I) 工艺是一种很有潜力的C/C 复合材料制备工艺, 它可以在较短的时间内制备出密度均匀性较高的C/C 复合材料制件。本文根据传热、传质理论及C/C 复合材料预制体的结构特点建立了TCV I 过程的动力学模型和几何模型, 在该模型的基础上利用数值模拟技术对该工艺进行了模拟和分析。模拟结果为TCV I工艺的开发和应用提供了理论依据。  相似文献   

4.
以可再生的资源无水乙醇为前驱体,在负压条件下,沉积温度为900℃~1200℃,采用压力梯度CVI工艺制备C/C复合材料.考察了沉积时间与密度的变化规律,采用偏光显微镜和扫描电镜观察了材料的组织结构和断口形貌,利用三点弯曲测定了材料的弯曲强度.结果表明:采用乙醇为前驱体,可大幅度提高致密化效率,96h制备出密度为1.47g/cm3的C/C复合材料;易于获得高织构的组织,制备试样的热解炭组织以粗糙层为主,断裂方式为假塑性断裂.乙醇是一种很有应用前景的制备C/C复合材料的前驱体.  相似文献   

5.
以碳毡为增强体,碳氢有机液体为前驱体,采用自行设计的快速化学液相沉积工艺(RCLD)制备了Cf/C、Cf/C-SiC复合材料;研究了不同密度的毡体和不同的沉积时间等因素对复合材料力学性能和氧化性的影响,根据材料结构特征分析了其影响机理.  相似文献   

6.
化学液气相沉积技术是目前最快的C/C复合材料的制备工艺,它的致密化速度是传统等温化学气相沉积工艺的100倍.本文阐述化学液气相沉积工艺的优越性和用于制备C/C复合材料的工艺原理;讨论化学液气相沉积热解炭的微观组织结构和工艺的计算机数值模拟的研究进展,最后展望化学液气相致密化技术的发展和应用前景.  相似文献   

7.
直热式化学气相渗C/C复合材料研究   总被引:1,自引:1,他引:0  
采用直热式化学气相渗工艺制备了 C/ C复合材料 ,以 2 D无纬织物和碳毡为纤维预制体 ,液化石油气为碳源气体 ,在常压下经 2 5 h左右沉积得到整体密度分别为 1.6 0 g· cm- 3和 1.78g· cm- 3的 C/ C复合材料。观察了材料的微观结构 ,测试了材料的力学性能和热物理性能。结果表明 ,直热式化学气相渗制备的 C/ C复合材料具有良好的力学性能和热物理性能 ,是一种较为理想的制备 C/ C复合材料的新工艺。  相似文献   

8.
CLLVD法制备2D C/C复合材料   总被引:3,自引:0,他引:3  
化学液气相沉积法是快速低成本制备C/C复合材料的一种新型工艺。通过离该工业快速制备C/C复合材料的根本原因,并以1.5mm/h的速度制备了炭布局叠2DC/C复合材料,同时对该材料进行了力学性能测试和金相分析。实验结果表明材料优越,说明该工艺是制务C/C复合材料的理想工艺。  相似文献   

9.
C/C复合材料高温抗氧化涂层的研究现状与展望   总被引:13,自引:0,他引:13  
C/C复合材料在高温下的氧化严重制约了该材料在航空航天领域的推广应用,涂层技术是目前解决该材料高温易氧化的最佳手段.本文综述了C/C复合材料高温抗氧化技术在玻璃涂层、金属涂层、陶瓷涂层和复合涂层等体系方面的研究现状,总结了C/C复合材料高温抗氧化涂层在传统制备工艺的改善以及新方法的开发等方面取得的研究成果,并提出了C/C复合材料高温抗氧化涂层当前研究中存在的问题和今后潜在的发展方向.  相似文献   

10.
设计了两种不同结构的预制体,即碳布 碳毡(1#预制体)、无纬布 碳毡(2#预制体),经化学气相沉积(CVD)与浸渍树脂相结合的致密化工艺制备出了高密度的增强毡C/C复合材料.结果表明:1#、2#预制体制备的C/C材料表现出了良好的力学性能,其拉伸强度分别达61.25MPa和53.12MPa,其中2#材料的拉伸破坏表现出了假塑性.结合材料的微观形貌研究了预制体结构、界面对C/C复合材料拉伸性能的影响.  相似文献   

11.
模压法制备C/C复合材料的研究   总被引:19,自引:6,他引:13  
对模压法制备 C/ C复合材料的坯体模压工艺过程、 C/ C复合材料的致密化过程及 C/ C复合材料的结构和性能的相关性进行了研究。结果表明,物料中纤维含量及模压的温度、压力是影响初坯体成型及其密度的关键;除工艺条件外,原料的组成也是影响 C/ C复合材料致密化的重要因素;对 C/ C 复合材料力学性能研究的结果表明, C/ C复合材料的密度对材料的力学性能有很重要的影响。  相似文献   

12.
CLVD法制备炭毡/炭复合材料   总被引:17,自引:7,他引:10  
用化学液气相沉积(CLVD)法制务炭毡/炭复合材料,用电镜扫描(SEM)观察了材料的微观结构,并分析了预制件内部温度梯度的建立过程,结果表明:该法制备的炭毡/炭复合材料致密均匀、结构理想,其预制体内部温度梯度的大小与前驱体的沸点有关。  相似文献   

13.
为通过快速增密和低设备成本降低C/C复合材料的成本,采用中压浸渍、炭化多次循环的工艺制备了快速增密的C/C复合材料。该工艺以Z向增强的层叠炭布为增强体,不同软化点的中间相沥青和改性沥青为浸渍剂。考察了浸渍工艺,并研究了所得C/C复合材料的力学性能和断裂形貌。结果表明,中间相沥青及改性沥青等高残炭收率沥青是C/C复合材料极佳的浸渍剂,有利于快速增密。8次循环后(约2周时间),复合材料的密度从0.84g/cm^3增至1.76g/cm^3。炭布层叠Z向增强的C/C复合材料有良好的力学性能,而且其性能随着密度的增加而提高。所得复合材料的密度达到1.76g/cm^3时,拉伸强度为87.03MPa,弯强为113.56MPa,压缩强度为199.49MPa。  相似文献   

14.
在C/C 复合材料表面制备了MoSi2-SiC 抗氧化涂层, 分析了涂层工艺对C/C 复合材料组织的影响, 测试了材料的室温弯曲力学性能。结果表明, 该工艺在C/C 复合材料表面生成抗氧化涂层的同时, 基材内部的层间和纤维束界面, 以及孔隙周围也被硅化。C/C 复合材料经涂层工艺处理后, 弯曲断裂行为发生改变, 弯曲强度明显升高,塑性有一定程度的降低。   相似文献   

15.
SiC nanowires/pyrocarbon (SiCnws/PyC) core-shell structure toughened C/C-ZrC-SiC composites were fabricated by CLVD process,and the influences of PyC shell thickness on the microstructure and ablation resistance of the composites were researched.The results presented that SiCnws/PyC core-shell structure had a linear shape,and the composites became dense with the increasing PyC thickness.When the thickness of PyC shell increased from 0 to 2.4 μm,the density and thermal conductivity of the composites was improved gradually,but the coefficient of thermal expansion (CTE) decreased firstly and then increased.After the ablation test for 90 s,the ablation rates of the composites decreased continuously as the PyC thickness increased from 0 to 1.4 μm,but increased when the PyC thickness was up to 2.4 μm.Especially when the PyC thickness was 1.4 μm,the linear and mass ablation rates of the composites were 71.25 % and 63.01 % lower than those of the composites without PyC shell.The reasons behind the remarkable improvement of anti-ablation property were that the proper PyC thickness could alleviate the CTE mismatch to promote the formation of complete oxide coating,improve the thermal conductivity to reduce heat corrosion and enhance the capability to limit the mechanical erosion.  相似文献   

16.
涂层碳/碳复合材料氧化机理的研究   总被引:1,自引:0,他引:1  
焦更生  李贺军  李克智  王闯 《功能材料》2007,38(8):1327-1330
通过高温等温氧化实验,对自制涂层碳/碳复合材料的氧化机理进行了研究.研究结果表明,涂层碳/碳复合材料的等温氧化可分为4个阶段.氧化初期,涂层的表面开始氧化,氧化失重是一个受氧气和涂层的化学反应控制,表现为氧化增重;氧化中期,氧化失重受玻璃质的形成速度和蒸发速度控制,表现为缓慢的氧化失重,氧化失重与时间的关系为直线型;随后,涂层上出现裂纹的形成和愈合过程,涂层深层被氧化,表现为较快的氧化失重;最后,涂层被局部破坏,基体被部分氧化,氧化失重直线上升.  相似文献   

17.
以乙醇和甲烷为前驱体,采用化学气相渗透工艺制备了三维五向编织C/C复合材料。利用偏光显微技术分析了复合材料的微观结构,考察了复合材料的静态弯曲性能和疲劳行为,研究了不同循环加载周期对复合材料弯曲强度和力学行为的影响。结果表明:采用混合前驱体可成功制备高织构3DC/C复合材料,材料的平均弯曲强度为379.2 MPa,其疲劳极限为静态弯曲载荷的80.3%。加载循环应力后, C/C复合材料的弯曲强度在不同周次均有所提升,循环105周后弯曲强度的增幅达16.8%。材料弯曲承载时的"屈服区"随着循环次数的增加出现先增大后减小的变化趋势,这与材料疲劳过程中纤维与基体、基体与基体的结合状态有关。  相似文献   

18.
采用无压熔渗方法制备炭纤维整体织物/炭2铜 (C/ C2Cu) 复合材料 , 在 MM22000型环2块摩擦磨损试验机上考察复合材料的摩擦磨损性能 , 利用扫描电子显微镜观察分析磨损表面形貌 , 研究 C/ C坯体对材料的摩擦磨损行为的影响及机制。结果表明 : 随着 C/ C坯体密度的增加 , 摩擦系数及 C/ C2Cu材料自身和对偶的磨损量均降低 ; 采用浸渍/炭化 ( I/ C) 坯体的 C/ C2Cu材料摩擦系数及自身和对偶件的磨损量均高于采用化学气相渗透(CVI) 坯体的试样; 摩擦面平行于纤维取向的试样摩擦系数低于垂直于纤维取向的试样 , 但磨损率较高。  相似文献   

19.
MSI工艺制备C/SiC复合材料的氧化动力学和机理   总被引:6,自引:0,他引:6  
以针刺整体炭毡为预制体, 采用CVD+MSI工艺制备了C/SiC复合材料, 借助XRD和SEM研究材料的微观组织, 通过等温氧化失重和非等温热重分析研究材料的氧化反应动力学和反应机理. 结果表明: MSI工艺所制备的C/SiC材料致密度高, 物相组成为类石墨结构的C、反应生成的SiC和残留Si. 其等温氧化反应机理: 第Ⅰ阶段为反应控制, 第Ⅱ和Ⅲ阶段为扩散和反应共同控制; 材料的非等温氧化过程呈现自催化特征, 氧化机理为随机成核, 氧化动力学参数为: lgA=8.752min-1, Ea=169.167kJ·mol-1. 与C/C材料相比, C/SiC材料有较差的低温氧化性能和稳定的高温氧化性能, 这与MSI的工艺特征密切相关.  相似文献   

20.
采用基体改性技术将ZrC引入C/C复合材料中,制备了一种新型的C/C—ZrC复合材料。通过氧乙炔焰烧蚀实验,研究了ZrC含量及烧蚀时间对C/C—ZrC复合材料高温耐烧蚀性能的影响。用XRD和TEM对烧蚀后材料的相组成和微观结构进行了分析,结果表明,ZrC被氧化的主要生成物为ZrO2,伴有少量ZrC和C,含26.46%ZrC的C/C—ZrC复合材料,在氧乙炔焰烧蚀50s后,在材料表面生成致密的ZrO2膜,阻挡了氧对基体的扩散,并有隔热作用,有效保护复合材料被烧蚀和冲刷。实验表明,复合材料在高温氧乙炔焰烧蚀20s后,线烧蚀率和质量饶蚀率分别为0.012mm/s和0.0033g/s,比C/C复合材料分别降低7.6%和50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号