首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The applications of titanium alloys are increasingly common at marine, aerospace, bio-medical and precision engineering due to its high strength to weight ratio and high temperature-withstanding properties. However, whilst machining the titanium alloys using the solid carbide tools, even with application of high pressure coolant, reduced tool life was widely reported. The generation of high temperatures at the tool–work interface causes adhesion of work material on the cutting edges, and hence, shorter tool life was reported. In order to reduce the high tool–work interface temperature-positive rake angle, higher primary relief and higher secondary relief were configured on the ball nose endmill cutting edges. Despite of careful consideration of tool geometry, after an initial working period, the growth of flank wear accelerates the high cutting forces followed by work material adhesion on the cutting edges. Hence, it is important to blend the strength, sharpness, geometry and surface integrity on the cutting edges so that the ball nose endmill would exhibit an extended tool life. This paper illustrates the effect of ball nose endmill geometry on high speed machining of Ti6Al4V. Three different ball nose endmill geometries were configured, and high speed machining experiments were conducted to study the influence of cutting tool geometry on the metal cutting mechanism of Ti-6Al-4V alloy. The high speed machining results predominantly emphasize the significance of cutting edge features such as K-land, rake angle and cutting edge radius. The ball nose endmills featured with a short negative rake angle of value ?5° for 0.05~0.06 mm, i.e. K-land followed by positive rake angle of value 8°, has produced lower cutting forces signatures for Ti-6Al-4V alloy.  相似文献   

2.
The application of titanium alloys are increasingly seen at aerospace, marine, bio-medical and precision engineering due to its high strength to weight ratio and high temperature properties. However, while machining the titanium alloys using solid carbide tools, even with jet infusion of coolant lower tool life was vividly seen. The high temperatures generated at the tool?Cwork interface causes adhesion of work-material on the cutting edges; hence, shorter tool life was reported. To reduce the high tool?Cwork interface temperature positive rake angle, higher primary relief and higher secondary relief were configured on the ball nose end-mill cutting edges. However, after an initial working period, the growth of flank wear facilitates higher cutting forces followed by work-material adhesion on the cutting edges. Therefore, it is important to blend the strength, sharpness and surface integrity on the cutting edges so that the ball nose end mill would demonstrate an extended tool-life. Presently, validation of tool geometry is very tedious as it requires extensive machining experiments. This paper illustrates a new feature-based ball-nose-end-mill?Cwork interface model with correlations to the material removal mechanisms by which the tool geometry optimization becomes easier. The data are further deployed to develop a multi-sensory feature extraction/correlation model to predict the performance using wavelet analysis and Wagner Ville distribution. Conclusively, this method enables to evaluate the different ball nose end mill geometry and reduces the product development cycle time.  相似文献   

3.
硬质合金刀具高速车铣和铣削TC4钛合金磨损试验对比   总被引:1,自引:0,他引:1  
石莉  姜增辉 《工具技术》2017,51(7):36-38
采用H13A未涂层硬质合金刀具对TC4钛合金进行高速正交车铣和铣削试验,并从刀具磨损破损形态、磨损机理及其寿命等方面进行对比分析。研究表明:高速正交车铣和铣削钛合金时,前、后刀面主要以粘结磨损为主,车铣加工时在切削刃口易形成积屑瘤及连续切屑,但对刀具材料粘结较轻;高速铣削时,对刀具材料粘接较重,在前刀面刃口附近形成凹坑及崩刃;后刀面最大磨损的位置不相同。试验对比了相同切削条件时刀具使用寿命,结果表明采用正交车铣加工可以获得更长的刀具使用寿命。  相似文献   

4.
Adhesion Wear on Tool Rake and Flank Faces in Dry Cutting of Ti-6Al-4V   总被引:1,自引:1,他引:0  
Titanium alloys are very chemically reactive and,therefore,have a tendency to weld to the cutting tool during machining.The deterioration in the tool life caused by adhesion is a serious problem when titanium alloys are cut using carbide tools.The chemical reactivity of titanium alloys with carbide tool materials and their consequent welding by adhesion onto the cutting tool during dry cutting leads to excessive chipping,premature tool failure,and poor surface finish.In the present study,dry turning and milling tests were carried out on Ti-6Al-4V alloys with WC?Co carbide tools.The adhesion on the tool rake and flank face was explored,the adhesive joint interface between the workpiece materials and tools were observed.SEM observation showed that adhesion can be observed both on the rake and the flank face,and was more pronounced in rake face than in flank face.There was evidence of element diffusion from the tool rake face to the adhering layer(vice versa) through the adhesive joint interface,which leads to the tool element loss and microstructure change.While the adhering materials at the flank face can be easily separated from the joint interface owing to the lower temperature and less pressure at the flank face,the adhesive wear attack results in an abrasive wear in the flank face.Moreover,adhesion is more notable in turning than in milling.The proposed research provides references for studying the adhesion between the workpiece materials and the tools,the adhesion mechanisms and their effect on the tool wear.  相似文献   

5.
This paper presents techniques for fabricating microscopic, curvilinear features in a variety of workpiece materials. Microgrooving and microthreading tools with cutting widths as small as 13 μm are made by focused ion beam sputtering and used for ultraprecision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide to create a number of critically aligned facets. Sputtering produces rake facets of desired angle and cutting edges having radii of curvature equal to 0.4 μm. Clearance for minimizing frictional drag of a tool results from a particular ion beam/target geometry that accounts for the sputter yield dependence on incidence angle. It is believed that geometrically specific cutting tools of this dimension have not been made previously. Numerically controlled, ultraprecision machining with microgrooving tools results in a close match between tool width and feature size. Microtools are used to machine 13-μm wide, 4-μm deep, helical grooves in polymethyl methacrylate and 6061 Al cylindrical workpieces. Microgrooving tools are also used to fabricate sinusoidal cross-sectional features in planar metal samples.  相似文献   

6.
A major factor hindering the machinability of titanium alloys is their tendency to react with most cutting tool materials, thereby encouraging solution wear during machining. Machining in an inert environment is envisaged to minimize chemical reaction at the tool-chip and tool-workpiece interfaces when machining commercially available titanium alloys at higher cutting conditions. This article presents the results of machining trials carried out with uncoated carbide (ISO K10 grade) tools in an argon-enriched environment at cutting conditions typical of finish turning operations. Comparative trials were carried out at the same cutting conditions under conventional coolant supply. Results of the machining trials show that machining in an argon-enriched environment gave lower tool life relative to conventional coolant supply. Nose wear was the dominant tool-failure mode in all the cutting conditions investigated. Argon is a poor conductor of heat; thus, heat generated during machining tends to concentrate in the cutting region and accelerate tool wear. Argon also has poor lubrication characteristics, leading to increasing friction at the cutting interfaces during machining and an increase in cutting forces required for efficient shearing of the workpiece.  相似文献   

7.
针对航空航天钛合金加工时硬质合金刀具磨损过快的难题,制备了主元素一致、微量合金碳化物TaC(NbC)含量不同的两种WC-Co基硬质合金材料。采用高温维氏硬度计检测两种材料的高温硬度和高温断裂韧性,并制备相同几何参数的立铣刀对钛合金TC4进行铣削加工试验。试验结果表明:在硬质合金中添加微量合金碳化物TaC(NbC),可以同时提高材料的高温硬度和高温断裂韧性,在相同的切削条件下,添加微量合金碳化物TaC(NbC)的硬质合金立铣刀比未添加微量合金碳化物的立铣刀耐磨性更好,刃口断裂裂纹更少,刀具使用寿命更长,更适合航空航天钛合金材料的高速铣削加工。  相似文献   

8.
Designing a high-performance solid carbide end mill is difficult due to the complex relationship between end mill geometry and numerous or conflicting design goals. Earlier approaches of computer-aided solid end mill design are limited to only a few design aspects. This article presents a three-dimensional finite element method of milling process for solid carbide end mill design and optimization. The software was secondarily developed based on UG platform, integrating the parametric design with the development of the two-dimension drawing of solid carbide end mill. The three-dimension finite element simulation for milling Ti-6Al-4V alloy was performed and the geometrical parameters were optimized based on the objective of low cutting force and cutting temperature. As a result, a simulation-based design and optimization of geometrical parameters of tool structure and cutting edge is possible. The optimized results, for the geometrical parameters of tool structure and cutting edge when milling titanium alloy using a 20-mm diameter solid carbide end mill, is a 12-mm diameter of inner circle, four flutes, a 45 ° helix angle, and a 9 ° rake angle of the side cutting edge.  相似文献   

9.
According to the hypothesis of ductile machining, brittle materials undergo a transition from brittle to ductile mode once a critical undeformed chip thickness is reached. Below this threshold, the energy required to propagate cracks is believed to be larger than the energy required for plastic deformation, so that plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted using diamond cutting for machining single crystal silicon. Analysis of the machined surfaces under a scanning electron microscope (SEM) and an atomic force microscope (AFM) identifies the brittle region and the ductile region. The study shows that the effect of the cutting edge radius possesses a critical importance in the cutting operation. Experimental results of taper cutting show a substantial difference in surface topography with diamond cutting tools of 0° rake angle and an extreme negative rake angle. Cutting with a diamond cutting tool of 0° rake angle could be in a ductile mode if the undeformed chip thickness is less than a critical value, while a ductile mode cutting using the latter tool could not be found in various undeformed chip thicknesses.  相似文献   

10.
In the present investigation, AA6005 (ISO: AlSiMg) alloy was machined in turning operation with different cutting tools, such as uncoated cemented carbide insert, PVD TiN coated, CVD diamond coated and PCD insert, under dry environment. Effect of cutting speed was studied for each of the cutting tools with regard to the formation of built-up layer (BUL) or built-up edge (BUE). The rake surface of the tools was characterized by optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopic microanalysis. Particular emphasis was given on wear mechanism of PVD TiN coated insert, conventionally used in machining ferrous alloys, during dry turning of AA6005 alloy. It has been observed that increase of cutting speed from 200 m/min to as high as 1000 m/min could not substantially reduce formation of BUL over tool rake surface during dry machining of AA6005 alloy with uncoated or PVD TiN coated cemented carbide inserts. The potential of diamond-based tools in dry machining of aluminium alloy was also studied. Finally, the effect of cutting speed on surface finish of the workpiece machined with different cutting tools was studied during dry turning of AA6005 alloy.  相似文献   

11.
Abstract

In present research work, ultrafine-grained strips of Al-6063 alloy were fabricated using hybrid extrusion machining technique known as “large strain extrusion machining (LSEM).” Fabrication of strips was done using the customized HSS tools of different rake angles varying from 0° to 10° under different machining conditions. Microstructural and mechanical characterizations of these strips were done to ascertain the effect of different parameters on their properties. From the results of hardness measurement of strips, it was concluded that hardness of the strips increased by 34–97% of the base material as of the refinement of grain size occurred. Surface lay was improved by 30% with higher cutting velocity and rake angle. Crystallite size was found to decrease with increase in the rate of strain. The shear strain was increased as chip compression ratio increased and rake angle decreased. Fabrication ability of strips increased due to increase in strain hardening exponent and it may result in the large scope of their applications. Nano-hardness of the strips was found to be more than bulk alloy. These above said results showed that ultrafine strips fabricated using LSEM process can become a good choice for future material fabrication.  相似文献   

12.
The current research is to focus on developing a liquid nitrogen diffusion system to optimize the usage of liquid nitrogen and maximizing cooling and lubrication capability by effective penetration. An atomized liquid nitrogen spray system was developed to diffuse liquid nitrogen effectively at a low flow rate (10–12 L/h) and as a high velocity (8–50 m/s) droplet jet to the machining zone. Using coated carbide tool with varying tool geometry (rake angle, approach angle, and nose radius), an investigation was performed to study the role of atomized liquid nitrogen spray-assisted machining, on performance of tool and surface quality of the machined workpiece during turning of Al-TiCp composite. To analyze the performance of liquid nitrogen spray-assisted machining, various experiments were conducted. The results obtained from the experiments reveal that the effective use of atomized liquid nitrogen spray machining is a feasible alternative to dry, wet, and cryogenically chilled argon gas. This technique significantly reduces heat generation in machining zone. The study also emphasizes the influence of tool geometry on the machinability of Al-TiCp metal matrix composites.  相似文献   

13.
In the present work, coated tungsten carbide tool inserts of ISO P-40 grade were subjected to deep cryogenic treatment at ?176°C. Turning studies were conducted on AISI 1040 workpieces using both untreated and deep cryogenic treated tungsten carbide cutting tool inserts. The turning performance was evaluated in terms of flank wear of the cutting tool inserts, main cutting force and surface finish of the machined workpieces. The flank wear of deep cryogenic treated carbide tools was observed to be lower than that of untreated carbide tools in machining of AISI 1040 steel. The cutting force during machining of AISI 1040 steel was lower with the deep cryogenic treated carbide tools when compared with the untreated carbide tools. The surface finish produced on machined AISI 1040 steel workpieces was superior with the deep cryogenic treated carbide tools as compared to the untreated carbide tools.  相似文献   

14.
高速铣削近α钛合金的切削温度研究   总被引:3,自引:0,他引:3  
切削温度不仅直接影响刀具的磨损和耐用度,而且也影响工件的加工精度和已加工表面质量。由于钛合金导热性差和化学亲和性强等原因,通常在其切削加工时切削温度高、刀具磨损严重,致使切削速度难以进一步提高。本文重点对钛合金高速铣削时的切削温度进行试验研究,阐明夹丝半人工热电偶法测温原理和所测热电势信号的物理意义。试验选用了3种不同类型的硬质合金刀具,系统地研究了切削用量、冷却条件及刀具磨损等因素对近α钛合金高速铣削时切削温度的影响。  相似文献   

15.
Geometry of cutting edge has great influence on performance and reliability of modern precision cutting tools. In this study, two-dimensional finite element model of orthogonal cutting of Fe–Cr–Ni stainless steel has been built to optimize the geometric parameters of chamfered edge. A method to measure the chip curl radius has been proposed. The effect of cutting edge geometric parameters on tool stress and chip curl radius has been analyzed. Then, the chamfered edge parameters have been optimized based on numerical simulation results. It finds that, keeping the equal material removal rate, the optimal geometric parameters of chamfered edge for rough machining Fe–Cr–Ni stainless steel are that the rake angle is from 16° to 17°, and the chamfer length is from 60 to 70 μm. Small (large) rake angle combined with small (large) chamfer length is more reasonable to reduce the tool stress. When the length of land is approximately equal to undeformed chip thickness and the rake angle is larger than 15°, the chip curl radius is minimal. The groove type with large radio of width to depth should be used in the chip breaking based on the optimization results.  相似文献   

16.
This paper focuses on the analysis of tool wear mechanisms in finishing turning of Inconel 718, one of the most used Ni alloys, both in wet and dry cutting. Cemented carbides, ceramics and CBN tools are suitable for machining Ni alloys; coated carbide tools are competitive for machining operations of Ni alloys and widely used in industry. Commercial coated carbide tools (multilayer coating TiAl/TiAlN recommended for machining Ni alloys) were studied in this work. The feasibility of two inserts tested for dry cutting of Inconel 718 has been shown in the work. Experimental test were performed in order to analyze wear patterns evolution. It was found great influence of side cutting edge angle in tool wear mode.  相似文献   

17.
ABSTRACT

Superalloys with burr-free parts are most preferably used in biomedical, aerospace, marine and automotive applications. In order to reduce the global pollution content, industries strive to execute stringent green manufacturing technologies. There is a need to investigate the different available tools in high-speed micro-milling process to achieve desired burr free with good surface finish on super alloys without using traditional coolants. In machining of titanium and its alloys, because of low thermal conductivity and reactivity with tool materials instigate the burr formation on work material and lowers the tool performance. The main objective of this article is to investigate the top burr formation in high-speed micro-end milling of alpha + beta-titanium alloy-grade 23 ELI (Ti-6Al-4V) under dry cutting conditions using Uncoated and physical vapor deposition coated AlTiN, TiAlN tungsten carbide end mills. Machining performance of the three cutting tools was compared. From the comparison of cutting tools for machining titanium alloy-grade 23, it is found that coated TiAlN tools produce less burr formation than coated AlTiN and uncoated tungsten carbide tools.  相似文献   

18.
Though titanium alloys are being increasingly sought in a wide variety of engineering and biomedical applications, their manufacturability, especially machining and grinding imposes lot of constraints. Titanium alloys are readily machinable provided the cutting velocity is in the range of 30–60 m/min. To achieve higher productivity, if the cutting velocity is enhanced to 60–120 m/min and beyond, rapid tool wear takes place diminishing the available tool life. Tool wear in machining of titanium alloys is mainly due to high cutting zone temperature localised in the vicinity of the cutting edge and enhanced chemical reactivity of titanium with the tool material. Rapid tool wear encountered in machining of titanium alloys is a challenge that needs to be overcome. High pressure cooling in machining is a very promising technology for enhancing tool life and productivity via appropriate cooling and lubrication. The present investigation is an attempt to study the effects of jet application parameters, i.e., coolant pressure, angle of impingement of the jet, spot distance and nozzle diameter on tool wear and chip morphology and to compare the effectiveness while turning Ti-6Al-4V bars under high pressure cooling with neat oil. Results indicated that at a cutting speed of 85 m/min and feed of 0.2 mm/rev, high pressure cooling provided a tool life of 24 min vis-à-vis 12 min under cryogenic cooling.  相似文献   

19.
TiN-coated cemented carbide, mixed ceramic and PCBN with a high percentage of CBN (PCBN-H) tools were used for reconditioned turning of hardened and tempered W320 steel hot working dies. The dies are usually scraped after their useful life because they are difficult to be reconditioned by machining. One alternative to scraping these dies is to convert them, increasing their internal diameters by internal turning. The machining experiments showed that coated carbide tools performed better at cutting speeds up to 120 m/min, while PCBN tools were superior at higher speeds up to 200 m/min. Mixed ceramic tools did not perform well under the conditions investigated. The tribological system showed abrasion, adhesion and plastic deformation as the dominant wear mechanisms. Chipping on the tool rake and flank faces, as well as catastrophic failure, was also observed in some experiments.  相似文献   

20.
In this paper we present an experimental study on ultraprecision machining (UPM) of single crystal Ge using the μ-LAM process. The material is oriented with the cutting plane normal to the <111> direction. It is shown that increased hydrostatic pressures on the surface during cutting by increasing the tool radius and negative rake angle can aid in enhancing ductile material removal from the surface. It is shown that the cutting performance can be increased by approximately 400% using the optimal tool geometry. It is also shown that the optimal tooling geometry with a steep negative rake angle, i.e. −65°, is capable of producing repeatable surface form and finish over long cutting distances. Finally, it will be shown that the laser beam used for μ-LAM, with the right amount of power, produces surfaces that are under less post machining residual stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号