首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
综述了以不同聚合物为基体的化学交联型凝胶聚合物电解质的主要制备方法和性能,并叙述了变联结构在电解质中的作用.  相似文献   

2.
龚永锋  傅相锴  张树鹏  丁萍萍 《功能材料》2006,37(11):1743-1745,1748
聚乙二醇(PEG,Mn=400,600),季戊四醇与CH2Cl2在碱性条件下,通过williamson反应合成以季戊四醇为核、以聚氧化乙烯的嵌段物为臂的星形网状聚合物.FTIR和1H-NMR分析表明,聚合物分子为C[CH2-OCH2O-(CH2CH2O)n-CH2O-]4的重复单元结构.季戊四醇的加入明显地改善了聚合物电解质的成膜性、力学性能和热稳定性.对聚合物电解质进行交流阻抗导电性研究表明:在25℃,离子电导率随着锂盐浓度的变化相继出现两个峰值,当w(Li-ClO4/聚合物)=8%时,离子电导率达1.03× 10-4S/cm;离子电导率随着温度的升高而迅速增加,且呈非Arrhenius变化.  相似文献   

3.
Conductivity behaviour of polymer gel electrolytes: Role of polymer   总被引:1,自引:0,他引:1  
Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction of polymer with salt and solvent has not been conclusively established. The conductivity of lithium ion conducting polymer gel electrolytes decreases with the addition of polymer whereas in the case of proton conducting polymer gel electrolytes an increase in conductivity has been observed with polymer addition. This has been explained to be due to the role of polymer in increasing viscosity and carrier concentration in these gel electrolytes.  相似文献   

4.
以甲基丙烯酸甲酯(MMA)、醋酸乙烯酯(VAc)和丙烯酸锂(LiAA)为单体,采用种子乳液聚合法制备了(P(MMA-VAc-LiAA)三元共聚物.利用红外光谱(FTIR),核磁共振(~1HNMR),差示扫描量热(DSC) /热重分析(TG),X射线衍射(XRD),扫描电镜(SEM)等方法对聚合物的结构进行了表征.将P(MMA-VAc-LiAA)与LiClO_4共混,采用流延法制备了聚合物电解质膜,用交流阻抗方法测试了电解质膜的电导率,结果表明,该聚合物电解质室温离子电导率可以达到10~(-3)S/cm.而且离子电导率随着温度的升高而迅速增加,电导率-温度曲线符合Arrhenius方程.机械性能测试结果表明,在P(MMA-VAc)的基础上,引入第三单体LiAA可以改善膜的收缩性与力学性能.  相似文献   

5.
李月姣  吴锋 《化工新型材料》2012,40(3):94-96,99
将PDMS引入到WPU中,合成了PEO-PDMS混合软段WPU嵌段共聚物,通过改变PDMS的含量得到一系列固态聚合物电解质膜。测试结果表明,PDMS的加入会对聚合物电解质材料的力学性能、微观形态、电化学性能产生显著影响。PDMS的加入可有效地提高聚合物电解质的室温电导率及电化学稳定性,30℃时样品C17-10电导率为1.05×10-4S/cm,其电化学稳定窗口达到5.5V。  相似文献   

6.
制备了聚偏氟乙烯 (PVDF) 锂盐 增塑剂聚合物固态电解质 ,并测定了该类电解质的电导率 ,结果表明 :以聚偏氟乙烯为基的凝胶电解质的室温电导率超过了 10 -3 S·cm-1,电导率与温度的关系服从VTF方程。并对该电解质进行了红外、扫描电镜、X衍射分析 ,发现了一个新相 ,并证实了在聚偏氟乙烯、锂盐、增塑剂三者之间共存的相互作用规律。  相似文献   

7.
Ionic conductivity studies in the temperature range 304–373 K for PVC---Li2SO4---dibutylphthalate polymer electrolyte systems are reported and discussed. Poly(vinylchloride) (PVC) has an electrical conductivity 10−8 S cm−1. The prepared films were studies by X-ray diffraction, Fourier transformation infrared, scanning electron microscopy and thermal analysis. The temperature dependence of the conductivity of the polymer films obeys the Vogel–Tammann–Fulcher relation.  相似文献   

8.
Recent theoretical approaches to the understanding of superionic conductivity in polycrystalline, glassy and polymeric materials are briefly reviewed. Phase transitions to the superionic conducting state in the AgI family are apparently triggered by cluster formation and strong mobile ion interaction within the clusters. Anomalous conductivity and related physical properties are explained in the cluster induced distortion model. Ionic composites such as AgX : Al2O3 (X = Cl, Br and I) involve conducting and non-conducting phases and the all-important interface between the two whose space charge enhances the conductivity and also trigger phase transitions to exotic polymorphic phases, for which the mechanisms are yet to be explored. Ion hopping dynamics controls the conductivity of superionic glasses. Mode coupling and jump relaxation theories account for the non-Debye relaxation observed in a.c. conductivity of these glasses. The theory of conductivity in polymer electrolytes—still in its infancy—involves their complex structure and glass transition behaviour. Preparative and thermal history, composition and crystallinity control ionic conductivity. New approaches to the synthesis of optimal polymer electrolytes such as rubbery electrolytes, crystalline polymers and nanocomposites must be considered before achieving a comprehensive theoretical understanding. Based on an invited talk given by the first author at the National Workshop on Solid State Ionics and its Applications, Bharatiar University, Coimbatore, 18–23 January 2002.  相似文献   

9.
We have prepared, characterized and investigated a new PEG-2000 based solid polymer electrolyte (PEG) x : NH4NO3. Ionic conductivity measurements have been made as a function of salt concentration as well as temperature in the range 265–330 K. Selected compositions of the electrolyte are exposed to a beam of 8 MeV electrons and 60Co γ-rays to an accumulated dose of 10 kGy to study the effect on ionic conductivity. The electrolyte samples are also quenched at liquid nitrogen temperature and conductivity measurements are carried out. The ionic conductivity at room temperature exhibits a characteristic peak for the composition, x = 46. Electron beam irradiation results in an increase in conductivity for all compositions by a factor of 2–3. Exposure to γ-rays enhances the conductivity by one order of magnitude. Quenching at low temperature has resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is interpreted as due to an increase in amorphous region and decrease in crystallinity of the electrolyte. DSC and NMR measurements also support this conclusion.  相似文献   

10.
以N-乙烯基咪唑、溴乙酸甲酯和二(三氟甲基磺酰亚胺)锂(LiTFSI)为原料,采用溶液聚合法制备了聚(1-乙烯基-3-乙酸甲酯基咪唑二(三氟甲基磺酰亚胺))(PMVIm-TFSI)。将其与LiTFSI和聚(甲基丙烯酸甲酯-醋酸乙烯酯)(P(MMA-VAc))共混制得了不同质量比的聚合物电解质。核磁共振(1 HNMR)、红外光谱(FT-IR)、示差扫描量热计(DSC)、热重分析(TGA)、X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗(AC impedance)等对电解质的测试结果表明,PMVIm-TFSI掺杂到P(MMA-VAc)和LiTFSI组成的电解质中后其电导率得到了极大的改善,30℃下最高可达4.71×10-4S/cm,同时热稳定性也得到了极大的提高。此外,该共混电解质(透过率≥90%)还可以运用到电致变色器件(ECD)导电离子材料中,也显示出了优良的电化学性能。  相似文献   

11.
含水的聚甲基丙烯酸凝胶电解质膜离子导电性研究   总被引:4,自引:1,他引:3  
刘景东  姚陈煙  王文继  易心正 《功能材料》2003,34(2):162-163,169
用溶液浇铸法(solvent casting method)制得了聚甲基丙烯酸凝胶电解质膜,室温的最高电导率为2.3×10-4 S·cm-1。探讨了盐类、丙三醇、α-Al2O3 添加荆以及使用溶剂对电解质膜导电率的影响。  相似文献   

12.
以水性聚氨酯(WPU)-聚二甲基硅氧烷(PDMS)共混体系为聚合物基体,通过添加不同质量分数的高氯酸锂(LiClO4)得到一系列固态聚合物电解质.交流阻抗测试结果显示,当LiClO4质量分数为15 %时体系电导率最高,并且温度与电导率关系基本符合Arrhenius方程.采用傅立叶红外光谱(FT-IR)对聚合物电解质中锂离子与羟基及醚氧基之间的相互作用分析显示,当LiClO4质量分数为15%时,锂离子与羰基及醚氧基的配位作用均达到饱和状态.拉曼光谱(Raman)研究结果表明,该聚合物体系对盐具有较好的溶解能力,增加盐浓度后,可使体系中有效离子的相对比例增加,有利于离子传输.  相似文献   

13.
通过共混法,将不同质量分数的聚二甲基硅氧烷(PDMS)添加到水性聚氨酯(WPU)中,并加入适量锂盐(LiClO4)得到一系列聚合物电解质膜.测试结果表明,与WPU聚合物电解质相比,PDMS改性后的WPU聚合物电解质体系具有良好的热稳定性.将聚合物膜浸泡在1 mol/L LiClO4(PC)溶液中12h,可得到吸液率为119%凝胶聚合物电解质,其电导率在30℃时可达到1.01×10-3S/cm,80℃为5.17×10-3/cm.  相似文献   

14.
陈春明  陈中华  曾幸荣  张正国 《功能材料》2012,43(16):2142-2145,2149
以间苯三酚、1,2,4-偏苯三酸酐和环氧氯丙烷为原料合成不同支化度的超支化聚合物(HBP),利用合成的超支化聚合物外围的氯原子与N-甲基咪唑进行离子化反应,制备含咪唑阳离子的超支化聚合物电解质(HBPE)。利用1H-NMR、FT-IR、DSC、TG和复阻抗谱分析等对HBPE的化学结构,热力学性能和离子传导性能进行了研究,结果表明,该聚合物电解质室温离子电导率可达2.3×10-4S/cm,热稳定性在270℃以上。  相似文献   

15.
聚合物凝胶电解质在镍氢电池中的应用   总被引:2,自引:0,他引:2  
毛立彩  吴锋  陈实  王芳  刘永 《功能材料》2005,36(9):1389-1390,1393
研究了一系列交联聚丙烯酸与KOH形成的水凝胶电解质的电化学特性。研究表明,聚合物凝胶电解质具有和KOH水溶液十分接近的离子电导率和稳定的电化学窗口,而且用聚合物凝胶电解质制作的Ni/MH试验电池具有更好的充放电循环特性。扫描电镜研究也证明,使用聚合物凝胶电解质的电池正负极材料腐蚀较小,没有明显的粉化,因此在Ni/MH电池领域将有广阔的应用前景。  相似文献   

16.
锂离子电池用有机电解液和聚合物电解质的研究进展   总被引:4,自引:0,他引:4  
从导电锂盐、有机溶剂和添加剂三个方面详细综述了锂离子电池用有机电解液的研究进展。同时针对聚合物电解质的组成、结构和性能的差异,将其分为四类,阐述了它们的优缺点及其在锂离子电池中的应用与研究进展。最后展望了电解质的发展前景。  相似文献   

17.
通过简单方法合成了一种新型有机碘盐N-甲基吡啶碘,以苯乙烯-丙烯腈共聚物(AS树脂)为聚合物凝胶电解质基体,丙烯碳酸酯及乙烯碳酸酯双组分有机溶剂为液相,制备了含有机碘盐(N-甲基吡啶碘)和无机碘盐(NaI)的AS树脂基聚合物凝胶电解质,比较了两种碘盐对聚合物凝胶电解质导电性能及染料敏化纳米晶太阳电池光电性能的影响,发现含有机碘盐的聚合物凝胶电解质具有较高的电导率,所制备的DSSC光电性能也较好。  相似文献   

18.
杨贺珍  冉奋 《材料导报》2018,32(21):3697-3705, 3719
电解质作为超级电容器的重要组成部分,对器件性能起着关键性作用。本文对近些年来超级电容器各种电解质,包括水系、有机液体、离子液体、固态/准固态聚合物电解质和氧化还原体系电解质的特点和最新研究成果进行了描述;重点介绍了固态/准固态聚合物电解质的分类及其性能研究概况。提出了发展电位窗口宽、离子电导率高、电化学性能稳定的离子液体和机械强度等综合性能优良的凝胶聚合物电解质是将来超级电容器电解质发展领域的趋势,最后对超级电容器电解质的发展前景进行了展望。  相似文献   

19.
综述了近几年锂离子电池凝胶聚合物电解质的制备技术进展,主要介绍了溶液浇铸法、倒相法和现场聚合等工艺的优缺点。现场聚合工艺流程简单、产品成本低,有极其广阔的发展前景。通过添加无机纳米粒子改善凝胶聚合物电解质的性能是目前的研究热点和发展趋势。  相似文献   

20.
孙岳明  李芳  林保平 《功能材料》2005,36(2):224-227
用萃取法制备了偏二氟乙烯 六氟丙稀共聚物( P ( VdF HFP))为基质, 1mol/L 的 LiPF6/EC/DMC/DEC 溶液为液体电解质的微孔型聚合物电解质。测试结果表明:室温电导率最大值达 4.38×10-3S/cm;扫描电镜(SEM)和 X 射线衍射分析(XRD)结果表明电解质膜为非晶态的多孔结构;差示扫描(DSC)结果表明在-50~76℃温度范围内膜电解质膜为无定形态;其电化学稳定性窗口为5V。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号