首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bruton's tyrosine kinase regulates apoptosis and JNK/SAPK kinase activity   总被引:2,自引:0,他引:2  
Mast cells derived from Bruton's tyrosine kinase (Btk)-defective xid or btk null mice showed greater expansion in culture containing interleukin-3 (IL-3) than those from wild-type (wt) mice. Although the proliferative response to IL-3 was not significantly different between the wt and xid mast cells, xid and btk null mast cells died by apoptosis more slowly than their wt counterparts upon IL-3 deprivation. Consistent with these findings, the apoptosis-linked c-Jun N-terminal kinase/stress-activated protein kinase (JNK) activity was compromised in these btk-mutated cells upon Fc(epsilon)RI crosslinking or upon stimulation with IL-3 or with stem cell factor. p38 activity was less severely, but significantly, affected by btk mutation, whereas extracellular signal-regulated kinases were not affected by the same mutation. Btk-mediated regulation of apoptosis and JNK activity was confirmed by reconstitution of btk null mutant mast cells with the wt btk cDNA. Furthermore, growth factor withdrawal induced the activation and sustained activity of JNK in wt mast cells, while JNK activity was consistently lower in btk-mutated mast cells. These results support the notion that Btk regulates apoptosis through the JNK activation.  相似文献   

3.
4.
Stimulation of the high affinity IgE receptor (FC epsilonRI) as well as a variety of stresses induce activation of c-Jun N-terminal protein kinases (JNKs) stress-activated protein kinases in mast cells. At least three distinct signaling pathways leading to JNK activation have been delineated based on the involvements of Bruton's tyrosine kinase (Btk), protein kinase C (PKC), and the JNK-activating cascades composed of multiple protein kinases. The PKC-dependent pathway, which is inhibited by a PKC inhibitor Ro31-8425 and can be activated by PMA, functions as a major route in FC epsilon RI-stimulated mast cells derived from btk gene knockout mice. On the other hand, wild-type mouse-derived mast cells use both PKC-dependent and PKC-independent pathways for JNK activation. A PKC-independent pathway is regulated by Btk and SEK1 via the PAK-->MEKK1-->SEK1-->JNK cascade, and is sensitive to phosphatidylinositol 3-kinase inhibitors, wortmannin and LY-294002, while the PKC-dependent pathway is affected to a lesser extent by both wortmannin treatment and overexpression of wild-type and dominant negative mutant SEK1 proteins. Another PKC-independent pathway involves Btk and MKK7, a recently cloned direct activator of JNK. Among the stresses tested, UV irradiation seems to activate Btk and JNK via the PKC-independent pathways.  相似文献   

5.
Bruton's tyrosine kinase (Btk) is essential for normal B-cell receptor signalling. The lack of expression of functional Btk in humans leads to the B-cell deficiency X-linked agammaglobulinaemia (XLA). We report here that Btk is also important for signalling via the collagen receptor glycoprotein VI (GPVI) in platelets. GPVI is coupled to the Fc receptor gamma chain (FcRgamma). The FcRgamma-chain contains a consensus sequence known as the immune-receptor tyrosine-based activation motif (ITAM). Tyrosine phosphorylation of the ITAM upon GPVI stimulation is the initial step in the regulation of phospholipase C gamma2 (PLCgamma2) isoforms via the tyrosine kinase p72(Syk) (Syk) in platelets. Here we show that collagen and a collagen-related peptide (CRP), which binds to GPVI but does not bind to the integrin alpha2beta1, induced Btk tyrosine phosphorylation in platelets. Aggregation, dense granule secretion and calcium mobilisation were significantly diminished but not completely abolished in platelets from XLA patients in response to collagen and CRP. These effects were associated with a reduction in tyrosine phosphorylation of PLCgamma2. In contrast, aggregation and secretion stimulated by thrombin in Btk-deficient platelets were not significantly altered. Our results demonstrate that Btk is important for collagen signalling via GPVI, but is not essential for thrombin-mediated platelet activation.  相似文献   

6.
7.
The cytoplasmic tyrosine kinase, Bruton's tyrosine kinase (Btk, formerly bpk or atk), is crucial for B cell development. Loss of kinase activity results in the human immunodeficiency, X-linked agammaglobulinemia, characterized by a failure to produce B cells. In the murine X-linked immunodeficiency (XID), B cells are present but respond abnormally to activating signals. The Btk gene, btk, was mapped to the xid region of the mouse X chromosome by interspecific backcross analysis. A single conserved residue within the amino terminal unique region of Btk was mutated in XID mice. This change in xid probably interferes with normal B cell signaling mediated by Btk protein interactions.  相似文献   

8.
9.
X-linked agammaglobulinemia (XLA) is a heritable immunodeficiency caused by mutations in the gene coding for Bruton's tyrosine kinase (Btk). Btk belongs to the Tec family of tyrosine kinases. Each member of the family contains five regions and mutations causing XLA have been isolated in all five regions. We have determined the solution structure of the Src homology 3 (SH3) domain of Btk using two- and three-dimensional nuclear magnetic resonance (NMR) spectroscopy on natural abundance and 15N-labeled protein material. The structure determination is complemented by investigation of backbone dynamics based on 15N NMR relaxation. The Btk SH3 forms a well-defined structure and shows the typical SH3 topology of two short antiparallel beta-sheets packed almost perpendicular to each other in a sandwich-like fold. The N- and C-termini are more flexible as are peptide fragments in the RT and n-Src loops. The studied Btk SH3 fragment adopts two slowly interconverting conformations with a relative concentration ratio of 7:1. The overall fold of the minor form is similar to that of the major form, as judged on the basis of observed NOE connectivities and small chemical shift differences. A tryptophan (W251) ring flip is the favored mechanism for interconversion, although other possibilities cannot be excluded. The side chain of Y223, which becomes autophosphorylated upon activation of Btk, is exposed within the potential SH3 ligand binding site. Finally, we compare the present Btk SH3 structure with other SH3 structures.  相似文献   

10.
Cisplatin (cis-diamminedichloroplatinum II), a potent antitumor compound, stimulates immune responses by activating monocytes/macrophages and other cells of the immune system. However, the mechanism by which cisplatin activates these cells is poorly characterised. Our earlier findings indicate that cisplatin treatment stimulates rapid tyrosine phosphorylation in a number of cellular proteins in murine macrophages. This initial tyrosine phosphorylation is an important regulatory mechanism and is followed by activation of several other proteins. In the present study, we report the involvement of other key molecules and the role of tyrosine phosphorylation in their activation in the signaling cascade of cisplatin. We observed the involvement of Ras (a low molecular weight GTP-binding protein) and ERK-1 (a MAP kinase) in this signaling cascade. Cisplatin treatment results in an increase in the expression of both Ras and ERK-1 in a dose-dependent manner, which was dependent upon tyrosine phosphorylation. Genistein a PTK inhibitor inhibited the cisplatin induced expression of Ras and ERK-1. These findings indicate that Ras and ERK-1 are important signaling molecules involved in the tumoricidal activation of macrophages with cisplatin and is dependent on initial tyrosine phosphorylation.  相似文献   

11.
Oncogenic mutations resulting in activated Ras Guanosine Triphosphate (GTP) are prevalent in 30% of all human cancers, but not primary nervous system tumors. Several growth factors/receptors are implicated in the pathogenesis of malignant astrocytomas including epidermal growth factor (EGFR) and platelet derived growth factor (PDGF-R) receptors, plus the highly potent and specific angiogenic vascular endothelial growth factor (VEGF). A significant proportion of these tumors also express a truncated EGFR, which is constitutively activated. Our work demonstrates that the mitogenic signals from both the normal PDGF-R and EGFR and the truncated EGFR activate Ras. Inhibition of Ras by genetic or pharmacological strategies leads to decreased astrocytoma tumorgenic growth in vitro and decreased expression of VEGF. This suggests that these agents may be potentially important as novel anti-proliferative and anti-angiogenic therapies for human malignant astrocytomas. In contrast to astrocytomas, where increased levels of activated Ras GTP results from transmitted signals from activated growth factor receptors, the loss of neurofibromin is postulated to lead to functional up-regulation of the Ras pathway in neurofibromatosis-1(NF-1). We have demonstrated that NF-1 neurofibromas and neurogenic sarcomas, compared to non-NF-1 Schwannomas, have markedly elevated levels of activated Ras GTP. Increased Ras GTP was associated with increased tumor vascularity in the NF-1 neurogenic sarcomas, perhaps related to increased VEGF secretion. The role of Ras inhibitors as potential therapy in this tumor is also under study.  相似文献   

12.
The small guanine nucleotide binding protein p21(Ras) plays an important role in the activation of the Raf kinase. However, the precise mechanism by which Raf is activated remains unclear. It has been proposed that the sole function of p21(Ras )in Raf activation is to recruit Raf to the plasma membrane. We have used Drosophila embryos to examine the mechanism of Raf (Draf) activation in the complete absence of p21(Ras) (Ras1). We demonstrate that the role of Ras1 in Draf activation is not limited to the translocation of Draf to the membrane through a Ras1-Draf association. In addition, Ras1 is essential for the activation of an additional factor which in turn activates Draf.  相似文献   

13.
Bruton's tyrosine kinase (Btk) is essential for normal B lymphocyte development and function. The activity of Btk is partially regulated by transphosphorylation within its kinase domain by Src family kinases at residue Tyr-551 and subsequent autophosphorylation at Tyr-223. Activation correlates with Btk association with cellular membranes. Based on specific loss of function mutations, the Btk pleckstrin homology (PH) domain plays an essential role in this activation process. The Btk PH domain can bind in vitro to several lipid end products of the phosphatidylinositol 3-kinase (PI 3-kinase) family including phosphatidylinositol 3,4,5-trisphosphate. Activation of Btk as monitored by elevation of phosphotyrosine content and a cellular transformation response was dramatically enhanced by coexpressing a weakly activated allele of Src (E378G) and the two subunits of PI 3-kinase-gamma. This activation correlates with new sites of phosphorylation on Btk identified by two-dimensional phosphopeptide mapping. Activation of Btk was dependent on the catalytic activity of all three enzymes and an intact Btk PH domain and Src transphosphorylation site. These combined data define Btk as a downstream target of PI 3-kinase-gamma and Src family kinases.  相似文献   

14.
ACTH, Angiotensin II (Ang II) and Vasopressin (AVP) are among the well known regulators of aldosterone secretion and also have a trophic action on the adrenal gland. According to classic studies, Ang II and AVP activate phospholipase C (PLC), diacylglycerol (DAG) and inositol phosphate (InsPs) production whereas ACTH activates cAMP production. However, our data indicate that the three peptides are able to induce a time-dependent increase in the level of Tyr-phosphorylation of several proteins. Western Blot analysis indicates a biphasic activation of Tyr-phosphorylation by AVP, with a peak at 30 s and a second one at 15 min incubation. Ang II induced a rapid (2 min) and sustained activation of Tyr-phosphorylation, while ACTH induced a progressive time course with a plateau reached at 15 min. Ang II and AVP also increased phosphorylation of p42mapk and p44mapk, while ACTH did not affect MAPK activity. Moreover, pre-incubation of the cells with genistein (Tyr-kinase inhibitor) and PD 098059 (a MAPK inhibitor) did not affect InsPs production or aldosterone secretion induced by Ang II or AVP. These results suggest that the MAPK pathway is involved in the control of cell growth rather than aldosterone secretion.  相似文献   

15.
16.
A theory is presented of the phase separation of supercoiled DNA into a nucleoid in a bacterial cell. The suspension consists of DNA interacting with globular proteins in excess salt. A cross virial between DNA and a protein is computed as well as the DNA self-energy arising from excluded volume. The cellular parameters of Escherichia coli would appear to be compatible with the thermodynamic equilibrium derived theoretically. The state of superhelical DNA in the nucleoid could be liquid crystalline and rippled.  相似文献   

17.
Microinjection of a truncated form of the c-kit tyrosine kinase present in mouse spermatozoa (tr-kit) activates mouse eggs parthenogenetically, and tr-kit- induced egg activation is inhibited by preincubation with an inhibitor of phospholipase C (PLC) (Sette, C., A. Bevilacqua, A. Bianchini, F. Mangia, R. Geremia, and P. Rossi. 1997. Development [Camb.]. 124:2267-2274). Co-injection of glutathione-S-transferase (GST) fusion proteins containing the src-homology (SH) domains of the gamma1 isoform of PLC (PLCgamma1) competitively inhibits tr-kit- induced egg activation. A GST fusion protein containing the SH3 domain of PLCgamma1 inhibits egg activation as efficiently as the whole SH region, while a GST fusion protein containing the two SH2 domains is much less effective. A GST fusion protein containing the SH3 domain of the Grb2 adaptor protein does not inhibit tr-kit-induced egg activation, showing that the effect of the SH3 domain of PLCgamma1 is specific. Tr-kit-induced egg activation is also suppressed by co-injection of antibodies raised against the PLCgamma1 SH domains, but not against the PLCgamma1 COOH-terminal region. In transfected COS cells, coexpression of PLCgamma1 and tr-kit increases diacylglycerol and inositol phosphate production, and the phosphotyrosine content of PLCgamma1 with respect to cells expressing PLCgamma1 alone. These data indicate that tr-kit activates PLCgamma1, and that the SH3 domain of PLCgamma1 is essential for tr-kit-induced egg activation.  相似文献   

18.
19.
BACKGROUND: The Btk (Bruton's tyrosine kinase) gene has been shown to be mutated in the human immunodeficiency disease, XLA (X-linked agammaglobulinemia). Btk is a member of the Tec family of cytosolic protein tyrosine kinases with distinct functional domains PH, TH, SH3, SH2, and kinase. Mutations have been observed in each of the Btk subdomains in XLA. We have analyzed the Btk gene in six XLA patients from five unrelated families. MATERIALS AND METHODS: DNA was prepared from the patients peripheral blood. The Btk exons including the junctional sequences were analyzed by single-strand conformation polymorphism (SSCP) followed by direct nucleotide sequencing after PCR-amplification. For structural analysis, the missense mutations were introduced into three-dimensional models of the PH and kinase domains of Btk and the outcome was predicted based on the knowledge of the protein function. RESULTS: Five novel mutations and two novel polymorphisms, all of which resulted from single-base alterations, were identified. Three of the five mutations were in the PH domain and two were in the kinase domain of Btk. Three of these mutations were of the missense type, two of which altered the same codon in the PH domain; the third one was located in the kinase domain. The fourth mutation was a point deletion in the PH domain causing a frameshift followed by premature termination. The fifth mutation was a splice donor-site mutation within the kinase domain which could result in an exon skipping. In four of the five instances, mothers of the patients were shown to be obligate carriers. In one instance, a sibling sister was identified as a heterozygote establishing her as a carrier. CONCLUSIONS: Functional consequences of the mutations causing frameshifts and altered splicing can be inferred directly. Functional consequences of the missense mutations were interpreted by 3-dimensional structural modeling of Btk domains. It is proposed that the two PH domain mutations will interfere with membrane localization while the kinase domain mutation will interfere with the enzymatic function of Btk. This study provides further insight into the role of Btk in XLA.  相似文献   

20.
Inhibition of Ras-dependent signaling and of oncogenic Ras function by farnesyl transferase inhibitors that block Ras membrane anchorage is limited due to alternative prenylation of Ras. Here we demonstrate that inhibition of the Ras-dependent Raf-1-MAPK (mitogen activated protein kinase) cascade is achieved by S-farnesylthiosalicylic acid (FTS) which affects Ras membrane association but not Ras farnesylation. FTS interferes with the activation of Raf-1 and MAPK and inhibits DNA synthesis in Ras-transformed EJ cells at concentrations similar to those at which it inhibits EJ cell growth (5-25 microM). FTS also inhibits MAPK activity and DNA synthesis stimulated by serum, EGF or thrombin in serum-starved untransformed Rat-1 cells, demonstrating the generality of its effects on Ras-dependent signaling. The effects of FTS on MAPK activity developed relatively rapidly (within 2-6 h) consistent with its rapid effect on Ras membrane anchorage. FTS represents a new class of Ras antagonists that may be useful for the inhibition of various types of oncogenic Ras isoforms independently of their prenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号