首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用机械球磨法制备了CNTs/Al复合材料,利用拉曼光谱和XRD对过程的相结构和组成进行了分析。结果显示,球磨过后的Al-CNTs复合粉末中没有Al4C3生成,经压制烧结后界面有Al4C3生成,而直接粉末冶金法制得的CNTs/Al材料没有Al4C3生成。应用热力学和动力学方法分析讨论了界面反应及产物形成过程。实验表明:机械球磨促进了界面反应,控制适当的球磨时间,可以减少对Al-CNTs复合粉末的破坏。  相似文献   

2.
机械球磨对煤矸石反应活性的影响   总被引:2,自引:0,他引:2  
高孟华  公明明  于建国 《中国矿业》2008,17(2):72-74,80
天然煤矸石化学性质稳定,必须进行活化后才能有效利用其中的Al3O3。实验表明,高岭石型煤矸石机械球磨10h后,Al2O3的提取率由7.24%增至88.17%,球磨可以有效提高煤矸石的反应活性;煤矸石经高温焙烧未完全活化时,机械球磨仍具有一定的活化作用,而且球磨时间越长这种活化作用越显著。  相似文献   

3.
采用机械合金化结合微波烧结制备钡铁氧体,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)和振动样品磁强计(VSM)对钡铁氧体制备过程的组织和性能进行分析.结果表明:在高能球磨初期,颗粒粒径减小,粉体得到细化,随球磨时间延长,部分BaCO3固溶于Fe2O3中形成固溶体;高能球磨40 ...  相似文献   

4.
为探究低温阶段Ti/Al之间的烧结机理,基于内耗测量技术系统研究了Ti/Al复合粉末压坯低温内耗行为。结果表明,Ti/Al粉末压坯的内耗性能具有明显的温度效应,升温测量过程中,270℃附近出现的不可逆内耗峰峰值随频率的增加而下降,随Al含量的增加而增加,该内耗峰是由应力释放引起的,是一个应力型内耗峰。降温过程中,230℃附近出现的内耗峰峰位随频率的增大向高温方向移动,具有一定的弛豫特征,该内耗峰源于Ti/Al复合粉末压坯升温过程由再结晶形成的Al晶界的滑移。  相似文献   

5.
利用ZJM10T型搅拌球磨机、X射线衍射仪研究MoSi2粉末在球磨过程中的固态相变行为.结果表明,随着球磨时问的延长,MoSi2粉末的衍射峰强度不断减弱、衍射峰逐渐宽化.当球磨强度较高,提供的能量达到相变所需的能量时,粉末发生t-MoSi2相向h-MoSi2相的转变,否则,粉末仅发生物理变化.随着球磨时间的增加,h-MoSi2相的量逐渐增加,继续球磨,MoSi2合金粉末呈非晶化.h-MoSi2相与t-MoSi2相在原子的堆垛顺序上有所不同,它可以在t-MoSi2晶体结构中原位形成.  相似文献   

6.
采用反应烧结法制备出Al_3Ti颗粒增强Al基复合材料,探讨了Al-Ti体系粉末的反应过程,研究了复合材料的微观组织形态及性能。结果表明,不同成分的Al-Ti体系粉末反应烧结产物均由Al_3Ti和Al两个相组成,当Al-Ti体系中Al∶Ti的摩尔比超过3∶1时,过量的Al熔化吸收大量热量,反应3Al+Ti→Al_3Ti被推向高温。随着烧结温度升高,Al_3Ti颗粒尺寸增大,复合材料致密度降低;随着Al_3Ti质量分数由80%降低至60%,Al_3Ti颗粒数量减少、尺寸减小,Al基体所占比例增大,复合材料致密度提高。当Al_3Ti质量分数为60%时,烧结反应产物形貌为较小的Al_3Ti颗粒弥散分布在Al基体上,此时复合材料致密度最高,达到96. 67%。不同成分Al_3Ti/Al复合材料的硬度和耐磨性均显著高于Al基体,随着Al_3Ti质量分数由60%增加到80%,复合材料硬度由107 HV增加到158 HV,当Al_3Ti质量分数为60%时,复合材料的耐磨性最好。  相似文献   

7.
陈格  雷霆  周林  乐刚 《矿冶》2014,23(2):59-61
利用高能球磨法制备了SiC/Al复合材料。在510~610℃温度下,研究了烧结温度对高能球磨法制备的SiC/Al复合材料力学性能的影响。SiC/Al复合材料的致密度和抗拉强度均随着烧结温度的升高而逐渐提高,在570℃时达到最大,继续升高温度,致密度下降。在最佳烧结温度570℃时,拉伸断口主要为韧性断裂,断口处观察不到SiC颗粒。在整个制备过程中没有发生Al-SiC界面反应。  相似文献   

8.
针对常规烧结方法难以实现强化相与基体相界面良好结合的特点,采用常压烧结、热压烧结、等离子活化烧结(PAS)3种不同烧结方式制备原位生成Mo2C强化铜基复合材料.利用X射线衍射仪对Cu-Mo-C机械合金化粉末进行了研究,Cu-Mo-C合金粉末在900 ℃以上温度条件下,原位反应生成Mo2C;对3组试样扫描电子显微镜及光学显微镜研究结果表明,PAS能够实现合金粉末与基体的良好结合,试样性能优于其他烧结方法试样.对复合材料进行了性能测试,等离子活化烧结铜基复合材料强度为452MPa,电导率为84%IACS.  相似文献   

9.
采用三维混料及高能球磨工艺制备WC-10Co混合粉,通过压制烧结工艺制备WC-10Co硬质合金,用SEM、EDS和XRD测试分析硬质合金组织性能。结果表明,与混合工艺制备粉末相比,球磨工艺制备的粉末产生细化、变形及均匀包裹,粉末分布更均匀。制备硬质合金的组织主要由WC、钴、η相和γ相组成。球磨粉末在烧结过程中形成较均匀液相,可改善因三维混合粉末分布不均导致的钨和碳在钴中的过分溶解,抑制WC脱碳,并且较细的WC和钴颗粒使形核点显著增加,促使晶粒细化,硬度、抗弯强度增大。  相似文献   

10.
Ti和TiH2与Al反应合成TiAl的研究   总被引:1,自引:0,他引:1  
熊翔  黄伯云 《矿冶工程》1997,17(3):75-78
对采用DSC、XRD和SEM3种方法分别由Ti和TiH2粉末与Al粉末(52%Ti和48%Al)反应合成TiAl合金的过程及其机理进行了分析和探讨。Ti与Al,TiH2与Al均需在Al转化为液态后才能进行剧烈的反应,但TiH2与Al的反应是由TiH2脱氢所产生的高活性Ti参与的,因而它们反应较完全,生成的TiAl相对量较高。随着反应的进行及Al元素的均匀化,反应初期生成的较不稳定的TiAl3相和αTi相将消失,反应生成物由TiAl相和少量Ti3Al相构成  相似文献   

11.
采用低压烧结法制备了纳米WC-10Co硬质合金,研究了烧结温度对烧结体的晶粒、密度及硬度的影响.研究表明,随着烧结温度的降低,烧结体WC的晶粒长大不明显,同时烧结体的密度和硬度都随之增大.当烧结温度为1320℃时,WC-Co烧结体的晶粒约为200nm,硬度HRA为94.6,可获得致密的WC-Co硬质合金.  相似文献   

12.
采用低压烧结法制备了纳米WC-10Co硬质合金,研究了烧结温度对烧结体的晶粒、密度及硬度的影响.研究表明,随着烧结温度的降低,烧结体WC的晶粒长大不明显,同时烧结体的密度和硬度都随之增大.当烧结温度为1320℃时,WC-Co烧结体的晶粒约为200 nm,硬度HRA为94.6,可获得致密的WC-Co硬质合金.  相似文献   

13.
本文研究了利用本钢南芬铁尾矿粉通过反应烧结法制备Al2O3-CaO-SiO2-MgO系复合材料的工艺方案。结果表明,通过合理的成分调整后控制熔制温度1500℃保温1h后水淬液态试样,将水淬后试样磨细后制得的粉末压制成型后放入高温电炉中升温至750℃温度条件下核化1h后在860℃温度条件下晶化1h可制备出相主体组成为透辉石和硅灰石、性能优良的Al2O3-CaO-SiO2-MgO系微晶玻璃复合材料产品。  相似文献   

14.
以铜粉和K_2CO_3颗粒为原料,用粉末烧结法制备出孔隙率为69%~81%的多孔铜。通过扫描电子显微镜(SEM)、能谱仪(EDS)观察分析其微观组织和化学成分,研究原料配比、烧结温度对孔隙率及压缩性能的影响,分析孔隙率与吸能效率的关系。结果表明,多孔铜内孔洞大小不一,大孔直径约180~210μm,小孔直径约2~6μm;多孔铜中造孔剂K_2CO_3已充分溶解,且随着铜与K_2CO_3配比的减少,多孔铜孔隙率增大,同时多孔铜压缩曲线平台区随着孔隙率增大而增长;烧结温度对孔隙率以及压缩性能影响较小;孔隙率对吸能性有影响,孔隙率越大其吸能性越好。  相似文献   

15.
采用真空热压烧结法制备铜-石墨复合材料,研究石墨质量分数分别为2%、5%和10%时,复合材料的密度、显微硬度、三点弯曲强度和摩擦磨损性能。结果表明,热压烧结法制备的复合材料组织较为致密,石墨分散均匀。随着石墨含量的增加,复合材料的硬度、强度下降,力学性能变差。复合材料的摩擦因数随着载荷的增加而增大,随着石墨含量的增加而降低,当石墨含量为10%时,复合材料的摩擦因数和质量磨损量最低,耐磨性能最好。  相似文献   

16.
采用选区激光熔化成形技术制备AlSi10Mg合金和TiB2/AlSi10Mg复合材料,利用XRD、SEM、TEM、万能拉伸实验机和维氏硬度计等对TiB2/AlSi10Mg复合材料的力学性能、组织结构等进行了表征分析。结果表明:AlSi10Mg合金中加入增强相TiB2后,其SLM成形件的致密度、屈服强度和断裂强度分别由96.8%、156.3 MPa和366.3 MPa增加至99.4%、170.1 MPa和413.4 MPa。TiB2/AlSi10Mg成形件屈服强度的提升主要来源于Orowan强化、弥散强化和细晶强化。与此同时,TiB2增强相的添加使得裂纹源增加,大幅度降低了AlSi10Mg合金的塑性(从8.5%下降到4.2%),其断裂机制由准解理断裂转变为解理断裂。  相似文献   

17.
以高温热解煤化工生产线产生的焦粉为原料,采用物理化学活化法、炭化活化一体化工艺技术,在氮气气氛的回转炉中进行高温炭化活化,制备出强度为94%,比表面积为1016 m2/g的煤质柱状活性炭。利用全自动比表面积及孔隙度分析仪分析了活性炭的氮气吸脱附曲线及孔结构特性。经检测,该活性炭孔容为0.51m L/g,碘吸附值为907 mg/g。同时比较了其炭化料和活化料在微观表面形貌中的特点,结果显示活化料中的孔洞类型和结构明显比炭化料中的丰富。在XRD测试分析中,活性炭中的晶态碳原子相比原料和炭化料逐渐呈现出非晶态转变。傅里叶变换红外光谱分析结果显示,活性炭中主要含有-OH、C-O-C和苯环等官能团,相较原料,其他官能团在活化时都转化成了CO_2、H_2O等小分子物质。  相似文献   

18.
为探究Si含量的变化对AlCrFeNiSi系高熵合金组织及性能的影响规律,采用激光诱导自蔓延烧结制备AlCrFeNiSi_x(x=0.2,0.4,0.6,0.8,1.0)多孔高熵合金。利用金相光学显微镜(OM)、扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、硬度测试等表征分析了不同Si含量的AlCrFeNiSi_x多孔高熵合金材料显微组织、物相结构、合金密度和孔隙率、维氏硬度及耐磨性能。结果表明,合金组织内部均匀分布微观孔隙,x=0.4时,合金孔隙分布最为均匀。x≤0.4时,合金由BCC相构成,x超过0.6时,合金在BCC相结构的基础上出现FCC相。AlCrFeNiSi0.6高熵合金硬度最大,为522.3 HV0.5;磨损率最小,为73.41mg/cm2;密度最大,为4.354g/cm3;孔隙率最低,为17.1%。x=0.2时,合金孔隙率最大,为39.92%。  相似文献   

19.
硅碳复合材料被认为是最具潜力的下一代高能量密度锂离子电池负极材料。然而,当前锂离子电池负极用高品质硅碳材料的制备过程复杂、硅源成本高造成其价格高昂,严重阻碍了硅碳复合材料在锂离子电池领域的规模化应用。采用低成本的切割废硅粉为硅源、人造石墨为碳源,采用简单的高能球磨法一步制备废硅粉-石墨复合材料(WSi-G)。系统研究了废硅粉的属性特征和硅碳复合材料的微观结构,所制备硅碳复合微粉的电化学性能。结果表明,微米尺寸的废硅粉直接用于锂离子电池时的负极循环性能快速衰减,采用球磨法制备的硅碳复合材料用于锂离子电池负极时展现出优异的循环稳定性,在0.5 A g-1电流密度下循环160圈后其可逆比容量仍然可以稳定在428 mA·h/g以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号