共查询到19条相似文献,搜索用时 31 毫秒
1.
针对k-medoid算法不能有效聚类大数据集和高维数据的弱点,将核学习方法引入到k-medoid算法,提出了基于核的自适应k-medoid算法,使其能够对大数据集和高维数据进行聚类.用KDD 99标准数据集进行实验研究,结果表明该算法性能是优良的,并且能获得令人满意的检测效果. 相似文献
2.
3.
针对K-Means聚类算法利用均值更新聚类中心,导致聚类结果受样本分布影响的问题,提出了神经正切核K-Means聚类算法(NTKKM)。首先通过神经正切核(NTK)将输入空间的数据映射到高维特征空间,然后在高维特征空间中进行K-Means聚类,并采用兼顾簇间与簇内距离的方法更新聚类中心,最后得到聚类结果。在car和breast-tissue数据集上,对NTKKM聚类算法的准确率、调整兰德系数(ARI)及FM指数这3个评价指标进行统计。实验结果表明,NTKKM聚类算法的聚类效果以及稳定性均优于K?Means聚类算法和高斯核K-Means聚类算法。NTKKM聚类算法与传统的K-Means聚类算法相比,准确率分别提升了14.9%和9.4%,ARI分别提升了9.7%和18.0%,FM指数分别提升了12.0%和12.0%,验证了NTKKM聚类算法良好的聚类性能。 相似文献
4.
近邻传播聚类(AP)方法是近年来出现的一种广受关注的聚类方法,在处理多类、大规模数据集时,能够在较短的时间得到较理想的结果,因此与传统方法相比具有很大的优势。但是对于一些聚类结构复杂的数据集,往往不能得到很好的聚类结果。通过分析数据的聚类特性,设计了一种可以根据数据结构自动调整参数的核函数,数据集在其映射得到的核空间中线性可分或几乎线性可分,对该核空间中的数据集进行近邻传播聚类,有效提高了AP聚类的精确度和速度。算法有效性分析以及仿真实验验证了所提算法在处理大规模复杂结构数据集上的性能优于原始AP算法。 相似文献
5.
一般说来,离群点是远离其他数据点的数据,但很可能包含着极其重要的信息.提出了一种新的离群模糊核聚类算法来发现样本集中的离群点.通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,在经典的FCM模糊聚类算法的基础上得到了一个特征空间内的全新的聚类目标函数,通过对目标函数的优化,最终得到了各个数据的权值,根据权值的大小标识出样本集中的离群点.仿真实验的结果表明了该离群模糊核聚类算法的可行性和有效性. 相似文献
6.
模糊核聚类的自适应算法 总被引:2,自引:2,他引:2
针对模糊聚类算法在样本特征不明显时不能取得很好的聚类效果,以及现有的模糊聚类算法需要事先确定聚类数,随机性强、容易陷入局部最优等弱点,将核函数和有效性函数引入到模糊聚类中,提出了模糊核聚类的自适应算法,此方法在性能上比经典的聚类算法有了较大的改进,取得了更好的聚类效果,实验结果证实了该方法的有效性和可行性. 相似文献
7.
为解决经典模糊聚类算法对噪声数据敏感、样本分布不平衡和高维数据集聚类效果不理想的问题。针对此不足,可以通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,从而在经典模糊聚类算法的基础上得到特征空间内的全新的目标函数。在基于核函数的模糊聚类算法中,核参数的选择是至关重要的。因此,提出了一个简单有效地决定核参数的方法。理论分析和实验结果表明,相对于其它经典模糊聚类算法,新算法具有更好的健壮性和聚类效果。 相似文献
8.
基于核方法可在高维特征空间中完成数据聚类,但缺乏对原输入空间聚类中心及结果的直观刻画.提出一种核自组织映射竞争聚类算法.该算法是利用核的特征,导出SOM算法的获胜神经元及权重更新规则,而竞争学习机制依然保持在原输入空间中,这样既解决了当输入样本分布结构呈高度非线性时,其分类能力下降的问题,而且解决了Donald[1]算法导致的特征空间中的获胜神经元在原始输入空间中的原像不存在,而无法对聚类结果利用可视化技术进行解释的问题.实验结果表明,提出的核自组织映射竞争聚类算法在某些数据集中可以获得比SOM算法更好的结果. 相似文献
9.
10.
基于核的K-均值聚类 总被引:17,自引:0,他引:17
将核学习方法的思想应用于K-均值聚类中,提出了一种核K-均值聚类算法,算法的主要思想是:首先将原空间中待聚类的样本经过一个非线性映射,映射到一个高维的核空间中,突出各类样本之间的特征差异,然后在这个核空间中进行K-均值聚类。同时还将一种新的核函数应用于核K-均值聚类中以提高算法的速度。为了验证算法的有效性,分别利用人工和实际数据进行K-均值聚类和核K-均值聚类,实验结果显示对于一些特殊的类分布数据,核K-均值聚类比K-均值聚类具有更好的聚类效果。 相似文献
11.
针对模糊C-均值算法聚类分析时的缺陷,采用能够较好地处理噪音和孤立点的可能性聚类算法,并将核学习方法的思想应用于可能性聚类算法中,提出一种基于核的可能性聚类算法。该方法利用Mercer核将观察空间的待分类样本点经过一个非线性映射后,映射到一个高维的核空间,突出不同类别样本之间的特征差异,使得原来线性不可分的样本点在核空间中变得更加线性可分,从而更好地聚类。经仿真实验表明,基于核的可能性聚类算法比模糊C-均值以及可能性聚类算法具有更好的聚类效果,且算法能够很快地收敛。 相似文献
12.
基于核自调整进行半监督聚类 总被引:2,自引:1,他引:1
半监督聚类是通过在无监督算法的基础上加入有限的背景知识来实现的。现有的基于核的半监督聚类算法对于核参数的设定仍需人工进行调节,其选择值会极大地影响最终的结果。通过将关联加入到聚类目标函数中,在聚类过程反复地优化高斯核参数,自动确定最佳RBF核,并将最佳核计算与SSKK算法结合起来得到SSKKOK算法。实验结果表明,该算法能在利用基于核半监督聚类算法功能的基础上自动设置有关的参数。 相似文献
13.
传统的快速聚类算法大多基于模糊C均值算法(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。可能性C-均值聚类较好地解决了FCM对噪声敏感的问题,但容易产生一致性聚类。将FCM和可能性C-均值聚类结合的聚类算法较好地解决了一致性聚类问题。为进一步提高算法收敛速度和鲁棒性,提出一种基于核的快速可能性聚类算法。该方法引入核聚类的思想,同时使用样本方差对目标函数中参数η进行优化。标准数据集和人造数据集的实验结果表明这种基于核的快速可能性聚类算法提高了算法的聚类准确率,加快了收敛速度。 相似文献
14.
模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。 相似文献
15.
王小妮 《计算机工程与设计》2015,36(1)
为有效考虑大数据流环境中设备节点的内存、计算处理能力、电池电量等资源有限的问题,分析在资源约束的情况下,快速有效挖掘抽取知识的方法,并在K-means算法的基础上提出DRA-Kmeans聚类算法.结合基于资源约束的自适应聚类算法框架RA-Cluster算法,引入自适应聚类方法,对数据流聚类算法CluStream进行改进.该算法在资源受限时优化聚类有效范围,加大聚类精确度;增大聚类半径阈值,抑制新聚类的生成,减少有限资源消耗. 相似文献
16.
This paper presents variable-wise kernel hard clustering algorithms in the feature space in which dissimilarity measures are obtained as sums of squared distances between patterns and centroids computed individually for each variable by means of kernels. The methods proposed in this paper are supported by the fact that a kernel function can be written as a sum of kernel functions evaluated on each variable separately. The main advantage of this approach is that it allows the use of adaptive distances, which are suitable to learn the weights of the variables on each cluster, providing a better performance. Moreover, various partition and cluster interpretation tools are introduced. Experiments with synthetic and benchmark datasets show the usefulness of the proposed algorithms and the merit of the partition and cluster interpretation tools. 相似文献
17.
Kernel-based object tracking using asymmetric kernels with adaptive scale and orientation selection 总被引:1,自引:0,他引:1
Alper Yilmaz 《Machine Vision and Applications》2011,22(2):255-268
Kernel-based object tracking refers to computing the translation of an isotropic object kernel from one video frame to the
next. The kernel is commonly chosen as a primitive geometric shape and its translation is computed by maximizing the likelihood
between the current and past object observations. In the case when the object does not have an isotropic shape, kernel includes
non-object regions which biases the motion estimation and results in loss of the tracked object. In this paper, we propose
to use an asymmetric object kernel for improving the tracking performance. An important advantage of an asymmetric kernel
over an isotropic kernel is its precise representation of the object shape. This property enhances tracking performance due
to discarding the non-object regions. The second contribution of our paper is the introduction of a new adaptive kernel scale
and orientation selection method which is currently achieved by greedy algorithms. In our approach, the scale and orientation
are introduced as additional dimensions to the spatial image coordinates, in which the mode seeking, hence tracking, is achieved
simultaneously in all coordinates. Demonstrated in a set of experiments, the proposed method has better tracking performance
with comparable execution time then kernel tracking methods used in practice. 相似文献
18.
A neural network architecture is introduced which implements a supervised clustering algorithm for the classification of feature vectors. The network is selforganising, and is able to adapt to the shape of the underlying pattern distribution as well as detect novel input vectors during training. It is also capable of determining the relative importance of the feature components for classification. The architecture is a hybrid of supervised and unsupervised networks, and combines the strengths of three wellknown architectures: learning vector quantisation, backpro-pagation and adaptive resonance theory. Network performance is compared to that of learning vector quantisation, back-propagation and cascade-correlation. It is found that performance is generally as good as or better than the performance of these other architectures, while training time is considerably shorter. However, the main advantage of the hybrid architecture is its ability to gain insight into the feature pattern space.Nomenclature
O
j
The output value of thejth unit
-
I
i
Theith component of the input pattern
-
W
ij
The weight of the cluster connection between theith input and thejth unit
-
B
ij
The weight of the shape connection between theith input and thejth unit
-
N
The dimension of the input patterns
-
v
j
The vigilance parameter of thejth unit
-
v
init
The initial vigilance parameter value
-
v
rate
The change in the vigilance parameter value
-
X
i
Theith direction in anN-dimensional coordinate system
-
T
k
The classification tag of thekth unit
-
C
The classification tag of the current input vector
-
(p)
The learning rate at thepth epoch for the cluster weights
-
p
The current epoch
-
P
The total number of epochs
-
E
k
The error associated with thekth unit
-
The constant learning rate for the shape weights
-
a
j
The age in epochs of thejth unit 相似文献