共查询到20条相似文献,搜索用时 78 毫秒
1.
针对移动目标跟踪的非线性、非高斯的特点,本文系统介绍了基于ARMll的嵌入式设备进行移动目标跟踪的应用实现.核心应用算法使用改进的粒子滤波算法,其中粒子滤波算法的改进采用对粒子加权以及重新采样,以克服样本贫化现象和区分粒子的重要性程度.然后闸述了将粒子滤波算法移植到嵌入式设备以实现移动目标跟踪的应用需要. 相似文献
2.
改进型粒子滤波算法在多站纯方位被动跟踪中的应用 总被引:2,自引:0,他引:2
针对多站纯方位被动定位与跟踪问题,给出了一种基于均匀重采样和带白适应因子的改进型粒子滤波算法.首先,基于无迹卡尔曼(UKF)粒子滤波器,将参考分布融入最新观测信息,得到符合真实状态的后验概率分布:借助重采样和使用鲁棒估计,改善了粒子滤波的退化问题.其次,引入自适应因子以调整UKF的状态模型协方差与观测模型协方差的比例,得到较高精度的概率分布.仿真结果表明,改进的粒子滤波算法能够实现多站纯方位被动跟踪,比传统非线性滤波器有更高的跟踪精度. 相似文献
3.
嵌入卡尔曼预测器的粒子滤波目标跟踪算法* 总被引:1,自引:1,他引:1
针对经典的粒子滤波视频目标跟踪算法进行粒子传播采用随机游走的方式,以及传统颜色直方图无法反映目标空间特征的问题,提出了一种改进的基于颜色的粒子滤波目标跟踪算法。该算法在统计目标二阶颜色直方图的基础上,获得粒子的观察概率密度函数,利用卡尔曼滤波确定粒子动态传播模型中的确定性漂移部分,使粒子状态估计值分布更精确地趋向目标的概率分布,大大提高了粒子的利用效率。实验表明,该改进算法的性能优于经典基于单一颜色特征的粒子滤波算法。 相似文献
4.
5.
6.
单传感器纯方位跟踪问题仍是目前研究的重点和难点,方位角变化率很大时往往使得扩展卡尔曼滤波等矩匹配算法不稳定或发散。重点研究漂移瑞利滤波算法在方位角变化率很大的复杂单传感器纯方位目标跟踪场景下的性能,比较了漂移瑞利滤波,扩展卡尔曼滤波,不敏卡尔曼滤波,粒子滤波等其他非线性跟踪算法的性能,推导并计算了相关问题的Cramer-Rao下界并将其用作比较估值准确性和衡量算法性能的评价指标。仿真结果表明:漂移瑞利滤波算法的性能优于其他矩匹配算法,能达到与粒子滤波大体相同的计算精度,但它的计算速度比粒子滤波算法快几个数量级。 相似文献
7.
随着人工智能科学的发展,目标跟踪成为中外学者研究的热点,近年来很多目标跟踪算法相继被提出,其中,经典的卡尔曼滤波算法常被用于目标跟踪领域。然而,在实际情况中,目标跟踪过程常涉及到非线性非高斯问题,由于粒子滤波算法在非线性非高斯系统中有较好的性能,因此将其引入目标跟踪研究领域。针对粒子滤波算法存在的跟踪精度差、实时性不高等问题,近年来国内外学者提出很多改进方法。从特征融合、算法融合和自适应粒子滤波三个方面介绍了相关改进方法的基本思想,展望了粒子滤波算法在目标跟踪领域的发展方向。 相似文献
8.
9.
相关滤波算法因其优越的高效性和鲁棒性被广泛应用于目标跟踪领域,但是该算法无法很好地处理目标遮挡和尺度变化等问题。针对该现象,提出了一种融合相关粒子滤波目标跟踪算法,该算法采用多个相关滤波器,学习到更多目标信息和背景信息,提高了目标与背景辨识度,并且引进了粒子滤波随机采样策略,在目标离开遮挡物时能够快速捕捉到目标。在尺度估计中引入了多尺度因子,对定位到的目标进行多尺度缩放,选用与滤波器响应值最大区域对应的尺度因子作为缩放比例,从而对目标进行尺度更新;粒子滤波算法随着粒子数目的增加,其计算量也随着增加,针对该问题,提出了基于粒子繁衍的重采样算法,在跟踪效率上做了提升。对提出的算法进行了三部分对比实验,实验结果验证了提出算法在处理目标遮挡和尺度变化问题上的有效性。 相似文献
10.
11.
郑娟毅 《计算机工程与应用》2011,47(15):83-85
分析了无线移动传感器网络中目标的跟踪原理,研究了基本粒子滤波算法的主要技术。对基本粒子滤波的重要性函数和重采样技术进行改进后,给出了一种提高基本粒子滤波算法跟踪精度的方法。通过仿真比较可以看出改进粒子滤波算法有较好的跟踪精度。在无线移动传感器网络中强调跟踪精度的场合,改进的粒子滤波算法会有更好的跟踪效果。 相似文献
12.
袁亮 《计算机工程与应用》2014,50(9):25-31
神经丝蛋白质(Neurofilament)是一种长而柔软的蛋白质有机物,它能在神经细胞中沿着神经轴突快速且随机地运动。人们希望通过对神经丝蛋白质的跟踪来分析它的运动性能,从而进一步了解神经细胞的性能。目前,研究人员只是通过在显微镜下拍摄到的神经丝蛋白质的运动视频,人工地跟踪它运动。这种人工跟踪不但对大量图像实现起来非常费时,而且会带来很多人为跟踪误差。提出了一种基于粒子滤波算法实现对神经丝蛋白质全自动跟踪的全新方法。为了提高粒子滤波的计算效率,在粒子滤波算法中利用了神经丝蛋白质在神经轴突内运动这一特征,限制了算法中粒子的位置和方向,从而显著地降低了粒子使用的数量,大大减少了算法的运算时间。在实际的实时跟踪实验中,提出的粒子滤波跟踪算法与通用的粒子滤波算法相比,显示出了运算速度快和跟踪准确的优点。同样,这种空间约束粒子滤波方法也适用于其他轴突物质的运动跟踪。 相似文献
13.
基于自适应粒子群优化的新型粒子滤波在目标跟踪中的应用 总被引:8,自引:0,他引:8
针对基于粒子群优化的粒子滤波(PSO-PF)算法精度不高,实时性差,难以满足雷达机动目标跟踪的需求,提出一种基于动态邻域自适应粒子群优化的粒子滤波(DPSO-PF)算法.该算法可以动态调整粒子邻域环境,其中每个粒子按照邻域的环境和自身的位置信息自适应地调整相互间的邻域粒子数量,使邻域粒子数量更为合理,达到寻优能力与收敛速度的最佳平衡.最后利用不同模型对该算法进行了仿真实验,实验结果表明所提出的算法能够提高雷达机动目标跟踪的实时性和精确性. 相似文献
14.
针对粒子滤波(PF)重采样后造成的粒子枯竭现象的问题,提出了一种基于改进重采样的粒子滤波无线传感器网络目标跟踪算法.该算法避免了残差重采样算法中的残留粒子重采样问题,减少了计算时间;通过产生新的粒子,增加了粒子的多样性,从而改善了粒子枯竭现象.仿真实验结果表明:改进重采样的粒子滤波算法提高了目标跟踪精度,降低了跟踪误差. 相似文献
15.
为了提高目标跟踪过程中粒子滤波结果的精度,将边缘粒子滤波算法应用于目标跟踪。首先将目标运动状态向量划分为线性和非线性两个子向量,然后,采用卡尔曼滤波方法处理线性状态子向量,采用粒子滤波方法处理非线性状态子向量。使用边缘粒子滤波算法和标准粒子滤波算法对目标进行跟踪仿真。仿真结果表明:将边缘粒子滤波算法应用在目标跟踪过程中,能够取得更高的跟踪精度;时间复杂度增加仅6%;在粒子数相对较少的条件下,仍能够保持较好的滤波性能。 相似文献
16.
17.
针对非线性环境中存在的机动目标跟踪问题,对基于贝叶斯估计的粒子滤波器进行研究,为解决混合退火粒子滤波重要密度函数构造的问题,在混合退火粒子滤波的基础上,通过对系统状态和观测粒子方差的研究,提出了非线性环境下动态退火参数粒子滤波的改进算法,在混合退火粒子滤波中引入动态退火参数来构造高效的重要密度函数,提高了混合退火粒子滤波的跟踪精度,应用该滤波方法对机动目标模型进行仿真,并对多种滤波跟踪算法进行性能测试和比较,仿真实验结果表明,在非线性环境下该粒子滤波方法可行有效. 相似文献
18.
为了提高噪声和混响环境中说话人跟踪的精度,提出一种基于粒子滤波的混合声源跟踪算法。根据接收信号信噪比变化较大的特点,该算法使用相位变换加权的可控响应功率定位函数来计算每帧信号的粒子状态观测值,利用其方差将接收信号帧分为高信噪比和低信噪比两种。对于高信噪比帧,仍采用该定位函数构造的似然函数来评价粒子权重,对于低信噪比帧,则采用常规可控波束形成定位函数构造的似然函数来评价粒子权重。仿真结果表明,在平均信噪比较高的条件下,该算法的跟踪性能与传统算法接近;在平均信噪比低于10 dB,混响时间大于200 ms的条件下,跟踪误差比传统算法减少20%~30%。 相似文献
19.
In this paper, we propose a new framework of particle filtering that adopts the minimax strategy. In the approach, we minimize a maximized risk, and the process of the risk maximization is reflected when computing the weights of particles. This scheme results in the significantly reduced variance of the weights of particles that enables the robustness against the degeneracy problem, and we can obtain improved quality of particles. The proposed approach is robust against environmentally adverse scenarios, particularly when the state of a target is highly maneuvering. Furthermore, we can reduce the computational complexity by avoiding the computation of a complex joint probability density function. We investigate the new method by comparing its performance to that of standard particle filtering and verify its effectiveness through experiments. The employed strategy can be adopted for any other variants of particle filtering to enhance tracking performance. 相似文献
20.
针对再入阶段弹道目标的跟踪问题,提出一种新的自适应滤波算法,即强跟踪有限差分扩展卡尔曼滤波(STFDEKF)算法,用于非线性系统的目标跟踪。该方法使用Sterling内插公式进行多项式的近似,从而实现对非线性函数的近似,避免了非线性函数的求导运算;并且算法中引入强跟踪的因子来修正先验的协方差矩阵。新算法改进了跟踪精度,扩大了应用范围,增强了滤波收敛性。仿真实验将新算法与扩展卡尔曼滤波器(EKF)、有限差分扩展卡尔曼滤波器(FDEKF)进行了比较,结果表明,STFDEKF在跟踪精度和滤波可靠性上均优于EKF和FDEKF,但其计算复杂性更大。得出结论,STFDEKF是个很有效的非线性滤波算法。 相似文献