首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
2μm掺铥光纤(TDF)激光器在遥感、激光雷达、探测、医疗、光学参量振荡等方面有着重要的应用,近年来得到了快速的发展,目前已实现千瓦级的激光输出。主要介绍了掺铥光纤激光器的基本原理,以及近年来国内外的研究进展与应用。最后对掺铥光纤激光器的发展进行展望。  相似文献   

2.
掺铥光纤激光器研究进展   总被引:2,自引:1,他引:2  
黎大军  杜戈果 《激光技术》2007,31(5):540-543
介绍了掺铥光纤激光器的基本结构以及工作原理;综述和分析了掺铥光纤激光器的研究国内外进展,阐述了掺铥光纤激光器可以采用几种不同的抽运源进行抽运,即LD抽运源、Nd∶YAG激光器抽运源、掺Yb3+光纤激光器抽运源以及色心、掺铒光纤激光器抽运源等。同时也指出了如何提高激光器输出特性的方法,即进一步改善交叉弛豫率、降低上转换以及热处理等。最后展望了掺铥光纤激光器在生物医学领域的应用前景。  相似文献   

3.
介绍了掺铥光纤激光器的基本结构以及工作原理,综述和分析了近年来以二色镜作为腔镜的F-P腔和以光纤光栅作为腔镜的F-P腔的掺铥光纤激光器研究的最新进展,最后指出了今后掺铥光纤激光器的发展方向.  相似文献   

4.
激光自诞生以来就在众多领域中有着广泛应用,激光碎石技术就是其中之一。相比目前激光碎石技术的“金标准”钬激光器,掺铥碎石光纤激光器在近些年不断发展,而且逐步被证明可实现更快的碎石速率与粉末化碎石、产生较小的碎石反推力、允许更高的液体灌溉速率等手术优点,同时整机系统支持免水冷工作、高电光效率运转、全光纤高效耦合以及大幅度体积缩减,因此受到了越来越多的关注。本文从连续性、准连续型和纳秒短脉冲型掺铥光纤激光器三个角度出发,详细总结了掺铥光纤激光器的部分重要研究进展及其在碎石领域的研究,介绍了掺铥光纤激光器用于碎石的优势与原理,并展望了未来研究的方向和挑战。  相似文献   

5.
南安普顿大学光电子研究中心的研究人员宣布他们采用双包层掺铥硅光纤已研制成2 μm的高功率可调谐连续波激光器。新激光器从 787nm 36 .5W输入功率产生 1 4 W的单模输出。该激光器输出波长可调 ,已工作在1 .85~ 2 .0 7μm波长范围 ,输出功率为几瓦。图 带有二个激光二极管条的掺铥光纤激光能在 2μm产生高效高功率输出最近对高功率全固态 2μm辐射源很有兴趣。该光谱区对人眼安全 ,因此对遥感应用(如激光雷达和医学应用 )很有用。对于中红外 ( 3~ 5μm)的高效非线性频率转换也很有用。这些应用需要很好的光束质量 ,对有些应用则是必不…  相似文献   

6.
基于商用单模掺铥石英光纤设计了高功率2.05μm波段全光纤主振荡功率放大器(MOPA)。以自制环形腔掺铥光纤激光器为种子,利用级联滤波型波分复用器优化长波长种子的光信噪比,基于MOPA结构实现了高效的高功率输出。基于速率方程模型,理论分析了主放大级的注入信号光功率和增益光纤长度的优化关系;实验中在102.6 W的793 nm泵浦功率下获得了输出功率为57 W、光谱线宽为0.08 nm、光信噪比为58.8 dB的单横模激光输出,主放大级斜效率为52.6%。  相似文献   

7.
调Q技术是掺铥光纤激光器获得纳秒脉冲激光输出的主要方式。本文首先介绍主动调Q、被动调Q和增益调制这三种调Q技术在掺铥光纤振荡器中的应用现状,对比和分析三种技术的优点与不足。其次,介绍窄脉宽、高平均功率、大脉冲能量纳秒掺铥光纤放大器的现有典型研究结果和面临的技术瓶颈,并从热管理、非线性效应抑制、放大自发辐射抑制三个方面进行了优化措施分析。最后,对纳秒掺铥光纤振荡器和放大器的技术发展趋势进行展望。  相似文献   

8.
掺铥光纤放大器及其研究进展   总被引:1,自引:0,他引:1  
介绍了S-波段光纤放大器——掺铥光纤放大器和增益位移掺铥光纤放大器的原理、结构、发展现状。  相似文献   

9.
2μm波段掺铥脉冲光纤激光器目前可实现最高毫焦量级的能量输出,对医疗、材料、通信等领域有重要意义。本文主要介绍近年来大能量掺铥光纤激光器系统研究的主要进展,讨论大能量掺铥光纤激光器的技术类型和影响因素。在此基础上,对大能量掺铥光纤激光器的研究前景进行展望。  相似文献   

10.
掺铥光纤激光器(Tm-Doped Fiber Laser, TDFL)具有结构 紧凑、散热性能优良、光束质量好、非线性效应阈值高 等优点,其量子转换效率在理论上可达200%。TDFL产 生的1.7~2.1 μm激光在多个领域具有广泛应用。简 要介绍了Tm3 离子的吸收谱和能级结构、TDFL三种泵浦方式的优 缺点以及国内外高功率TDFL的研究进展,并就其未来发展给 出了初步看法。  相似文献   

11.
掺Tm3+光纤激光器的进展   总被引:8,自引:0,他引:8  
总结分析了近期连续波输出、脉冲输出和上转换连续波输出的掺,Tm^3 光纤激光器现状。指出采用Tm^3 分别与Yb^3 、Ho^3 和Al^3 共掺的光纤,可使掺Tm^3 光纤激光器扩展抽运源波长、压缩调Q脉宽和提高斜率效率。  相似文献   

12.
高温气相掺杂法制备高掺铥石英光纤   总被引:1,自引:1,他引:0  
介绍了用高温气相掺杂技术制备高掺铥双包层光纤的原理及制备工艺。通过料路温度与掺杂浓度的对比实验,以及对该新制备工艺的研究完善,找到了合适的料路温度,提高了铥的掺杂浓度和掺杂浓度的均匀性,新工艺有效消除了预制棒芯部的凹陷,降低了光纤的本底损耗,最终制作出掺杂浓度高(≥0.6%)、内包层形状为D形的高性能的掺铥双包层光纤。  相似文献   

13.
与固体激光器不同,光纤激光器中增益光纤长度可近似认为整个谐振腔的长度,传统的速率方程模型只考虑激光器参数随时间变化,而不考虑这些参数沿轴向变化情况,会在理论上对激光器输出特性的分析带来误差。本文建立带内泵浦的增益开关掺Tm3+光纤激光器的行波方程模型,研究了腔内光子数、上能级粒子数和泵浦脉冲沿光纤轴向分布情况,以及不同重频和纤芯的增益光纤可提取能量的变化。在100 ns脉宽和15 μJ脉冲能量的泵浦脉冲作用下,当重频增加至5 MHz时,激光输出脉冲会出现多脉冲振荡现象。实验上实现了全光纤化的增益开关掺Tm3+光纤激光器,将实验结果与理论分析进行比较,两者之间较好相符。  相似文献   

14.
针对基于重叠因子模型的速率方程不能分析粒子数空间分布的情况,依据双包层掺Yb3+光纤激光器中,内包层光强近似于均匀分布、而纤芯中光场近似于高斯分布的特点,建立了基于光强分布的速率方程。依据该方程,分析了正向、反向和双向泵浦方式下,Yb3+上能级粒子数的空间分布。结果表明:沿光纤轴向,不同的泵浦方式导致上能级粒子数呈现不同的分布特征;而沿光纤径向,无论采用何种泵浦方式,上能级粒子数都呈现中间低、两端高的抛物线分布结构。  相似文献   

15.
王蓟  赵崇光  刘洋  王国政  王立军 《半导体光电》2006,27(5):522-525,555
通过求解速率方程,得到了掺镱双包层光纤激光器输出光功率和泵浦阈值功率表达式,分析了腔镜反射率、光纤长度对激光器阈值功率和输出激光功率的影响.采用相位掩模法在双包层光纤上直接写入光纤布拉格光栅,以此作为光纤激光器后腔镜,研制了稳定输出的掺镱双包层光纤激光器.试验得到了波长1 083.25 nm,线宽0.112 nm,最高输出功率1.07 W的稳定激光输出,泵浦阈值173 mW.  相似文献   

16.
一种高稳定DBR 型掺铒光纤激光器研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研制了一种高功率高边模抑制比及高波长稳定性的DBR型掺铒光纤激光器。该激光器使用980nmLD作为泵浦源,并使用长度为2.75m的高掺杂浓度的掺饵光纤作为增益介质,在1.55μm波段获得了3dB线宽为0.2nm,25dB线宽为0.4nm的激光输出。最大输出光功率25mW,输出功率稳定性±0.01dB,边模抑制比60dB,波长稳定性0.01dB(受光功率计精度的限制),阈值泵浦光功率8.6mW,斜率效率21.7%。  相似文献   

17.
高能量飞秒脉冲掺Er3 光纤激光器   总被引:5,自引:1,他引:4  
为了从反常色散光纤构成的飞秒锁模掺Er^3+光纤(EDF)激光器获得高能量锁模脉冲,提出了采用集总放大器和高损耗耦合输出器有机组合的办法来设计激光器腔体。实验结果表明,该方法能有效地减小降低腔内脉冲能量周期性波动,抑制频谱边带幅度,提高飞秒脉冲高能量及其频谱宽度。采用非线性偏振旋转机制进行锁模,成功获得谱线宽度为18.0nm、重复速率为14.0MHz、脉冲宽度约200fs、单脉冲能量超过1nJ稳定锁模光脉冲,并且激光器自启动锁模泵浦阈值小于20mW。  相似文献   

18.
利用非线性偏振旋转效应实现了掺YB3 光纤环形腔激光器的被动锁模.锁模脉冲的中心波长为1.05/μm,重复频率为22.22 MHz,光谱带宽为27.066 nm.被动锁模脉冲经掺Yb3 单模光纤放大器放大,再由单光栅脉冲压缩器进行色散补偿,最终获得了脉宽为120 fs,平均功率为12.5 mW,能量达0.56 nJ的稳定激光脉冲.最后分析了输出光脉冲的稳定性.  相似文献   

19.
综合报道了几种新型多波长掺铒光纤激光器,并对这些激光器的机理、实验装置及结果进行了详细的介绍,并展望多波长掺铒光纤激光器的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号