首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For the problem of the retardation of fatigue crack growth caused by single overload, cyclic strain changes in one cycle of the local crack tip region were investigated by using fine-grid-method. From the application of Crack Tip Strain Loop (C.T.S.Loop), the correlation between effective stress intensity factor range (ΔKeffT) defined from the stress range of C.T.S.Loop and crack growth rate (dadN) was discussed. Moreover, from the strain range of C.T.S.Loop, the correlation between crack-tip strain range (Δ?T) and dadN was also investigated.  相似文献   

2.
A model of fatigue crack growth based on an analysis of elastic/plastic stress and strain at the crack tip is presented. It is shown that the fatigue crack growth rate can be calculated using the local stress/strain at the crack tip by assuming that a small highly strained area x1, existing at the crack tip, is responsible for the fatigue crack growth, and that the fatigue crack growth may be regarded as the cumulation of successive crack re-initiations over a distance x1. It is shown that crack closure can be modelled using the effective contact zone g behind the crack tip. The model allows the fatigue crack growth rate over the near threshold and linear ranges of the general da/dN versus ΔK curve to be calculated. The fatigue crack growth retardation due to overload and fatigue crack arrest can also be analysed in terms of g and x1.Calculated fatigue crack growth rates are compared with experimental ones for low and high strength steel.  相似文献   

3.
An automated fatigue threshold test was developed which decreases testing time, eliminates need for constant operator attention, and produces a plot of fatigue crack growth rate (FCGR) data as the test proceeds. A minicomputer interfaced to a servo-hydraulic test stand adjusts loads during the FCGR test to achieve a specified stress intensity range (AA). The value of ΔK is decreased exponentially with crack growth to get the fastest load shedding without crack arrest. The procedure is as follows: apply load levels to obtain desired ΔK for the crack length, a; using the specimen compliance, compute a new value for a; adjust loads to obtain corresponding ΔK for that a; record a, ΔK, and cycle count (N); repeat. Plots of a vs N, and da/dN vs ΔK are made by a separate program. The optimized load shedding and 24hr/day operation result in a considerable reduction in test time. The program was written in BASIC on a MTS Automated Test System. Visual crack growth measurements showed good agreement with computer acquired data for a test of ETP Cu.  相似文献   

4.
Analysis of fatigue crack growth behavior of five beta-annealed alloys indicates significant effects of microstructure upon the logarithmic plot of fatigue crack growth rate (da/dN) vs stress-intensity range (ΔK). Each plot exhibits a bilinear form with a transition at ΔKT, the position of which lies between 18 and 31 MPa · m12 for the five alloys. Comparison of mean Widmanstätten packet size to cyclic plastic zone size, as analyzed on the basis of different models, indicates their equality at ΔKT. Greater clustering of the packet size distribution about the mean value effects a decrease in hypertransitional exponent (mA) in the power law, da/dN = C(ΔK)m, and a simulataneous increase in the sharpness of transition. Hypertransitional exponents for the five alloys lie between 2.9 ≤ mA ≤ 4.7, whereas hypotransitional exponents lie between 5.9 ≤ mB ≤ 7.6. Hypotransitional growth rates vary inversely with mean packet size, with a 20-fold reduction in da/dN observed for a 3.5-fold increase in mean packet size.  相似文献   

5.
Study on fatigue crack growth in steels was carried out from energetic point of view, i.e. taking account of plastic work around the fatigue crack. Based on the examination of the relation between fatigue crack growth rate (da/dN) and the plastic work around the fatigue crack tip (W0.02 in SUS304, Fe-3Si and HT 60 steels, a material constant-fatigue crack propagation work coefficient-Q0.02 is proposed. It is the ratio of W0.02 to da/dN and means the degree of the resistance to fatigue crack growth. Numerical expression of Q0.02 by mechanical properties was derived, which is given by
Q0.02=9.3x101y0.2)σy1.3
Comparison of Q0.02 of various steels showed that Q0.02 of high strength steels is very small compared with that of low strength steels. Graphical representation of the relation between Q0.02 and da/dN at various values of ΔK/σy for steels revealed that da/dN at given value of ΔK/σy increase with decreasing Q0.02. It is shown that fatigue crack growth behaviour of a steel (da/dN-ΔK relation) can be obtained from the Q0.02-da/dN diagram by knowing the mechanical properties. Discussion on design stress level of the steels is also given.  相似文献   

6.
The method of ultrasonic fatigue finds increasing interest in materials science. Especially, fatigue crack growth rates near the threshold stress intensity range, ΔK0, can be determined with this method in reasonable times providing no frequency and corrosion effects exist. But for an accurate application of this technique it is necessary to improve the testing systems and also the determination of the dynamic cyclic stress intensity range, ΔK. In this paper, fatigue crack growth experiments at ultrasonic frequencies with different mean stresses and also the calculation of the dynamic stress intensity range with finite elements are treated. On this basis fatigue crack growth curves at room temperature of the alloys Hastelloy X and IN 800 were measured and compared with results obtained at low frequencies. No significant influence of frequency could be found in these materials.  相似文献   

7.
A cumulative model of fatigue crack growth   总被引:1,自引:0,他引:1  
A model of fatigue crack growth based on an analysis of elastic/plastic stress and strain at the crack tip is presented. It is shown that the fatigue crack growth rate can be calculated by means of the local stress/strain at the crack tip. The local stress and strain calculations are based on the general solutions given by Hutchinson, Rice and Rosengren. It is assumed that a small highly strained area existing at the crack tip is responsible for the fatigue crack growth. It is also assumed that the fatigue crack growth rate depends mainly on the width, x1, of the highly strained zone and on the strain range, Δ?1, within the zone. A relationship between stress intensity factor K and the local strain and stress has been developed. It is possible to calculate the local strain for a variety of crack problems. Then, the number of cycles N1 required for material failure inside the highly strained zone is calculated. The fatigue crack growth rate is calculated as the ratio x1N1.The calculated fatigue crack growth rates were compared to the experimental ones. Two alloys steels and two aluminium alloys were analyzed. Good agreement between experimental and theoretical results is obtained.  相似文献   

8.
9.
Over a limited range, the effect of mean stress has been studied on fatigue crack propagation and on the critical fatigue crack size associated with sudden fast fracture in centre-notched plate specimens of a rail steel under pulsating loading. The results have been presented in terms of the stress intensity factor range ΔK and the ratio R of the minimum to maximum stress. Increasing R was found to both accelerate cracking and reduce the critical crack size at instability. The data have been correlated with three crack growth equations currently used in the literature and it was found that the equation of Forman et al. relating crack growth rate to ΔK and R gave the best fit. This equation was used to predict life in the finite range of the S-N curve. Fractographic examination revealed that the fracture surfaces were complex and a number of fracture modes contributed to cracking.  相似文献   

10.
For high temperature creep, fatigue and creep-fatigue interaction, several authors have recently attempted to express crack growth rate in terms of stress intensity factor KI = αg, where a is the equivalent crack length as the sum of the initial notch length a0 and the actual crack length a1, that is, a = a0 + a1. On the other hand, it has been shown by Yokobori and Konosu that under the large scale yielding condition, the local stress distribution near the notch tip is given by the fracture mechanics parameter of g?(σg), where a is the cycloidal notch length, σg is the gross section stress and ?(σg) is a function of σg. Furthermore, when the crack growth from the initial notch is concerned, it is more reasonable to use the effective crack length aeff taking into account of the effect of the initial notch instead of the equivalent crack length a. Thus we believe mathematical formula for the crack growth rate under high temperature creep, fatigue and creep-fatigue interaction conditions may be expressed at least in principle as function of aeffσg, σg and temperature.In the present paper, the geometrical change of notch shape from the instant of load application was continuously observed during the tests without interruption under high temperature creep, fatigue and creep-fatigue interaction conditions. Also, the effective crack length aeff was calculated by the finite element method for the accurate estimation of local stress distribution near the tip of the crack initiated from the initial notch root. Furthermore, experimental data on crack growth rates previously obtained are analysed in terms of the parameter of aeff σg with gross section stresses and temperatures as parameters, respectively.  相似文献   

11.
One of the most fruitful areas for application of the acoustic emission technique lies in characterization of yielding and fracture processes. For example, what are the microscopic details of the macroscopic slow crack growth process that precedes crack instability? Fundamental to answering this is the ability to detect and quantify the microcracking phenomena. It was found that the emission of a single elastic stress wave could be correlated to a load drop, ΔP, occuring during crack growth. Furthermore, this load drop could be interpreted via a theoretical compliance analysis in terms of area swept out by the advancing crack. It is proposed that any discrete stress wave emission associated with a fracture process can be interpreted in terms of an incremental fracture area, ΔA. This is given by
g=2·5 m K W12δAYLB
where g is the amplitude of the emission. K is the applied stress intensity, L is the distance between grips, W is the specimen width, B is the specimen thickness. Y is f(a/w) and m is the proportionality constant between stress wave amplitude and ΔPB. Crack-line loaded or compact tension specimens of 7075-T6 aluminum were used for the experimental investigation. A theoretical relationship between the load drop and the crack growth step was derived for this test specimen configuration. Over fifty experimental observations verified the linear relationship between g and ΔPB. For the above relationship, m was found to be 0.05 in2/lb sec2 from the compact tension data.  相似文献   

12.
The fatigue crack propagation characteristics of several rotor and wheel materials that are commonly used in rotating components of steam turbines were investigated. Particular emphasis was placed on the behaviour at near-threshold growth rates, ie below 10?5 mm/cycle, approaching the fatigue-crack propagation threshold, ΔKth. The lifetimes of the cracks of interest lie mostly in this region, and it is also the region where few data are available.The effects of load ratio on the fatigue crack growth rates were examined, as well as the tensile, Charpy V-notch and fracture toughness properties of the rotor and wheel materials. The relationship between fatigue crack propagation behaviour and fractographic features was examined. Fatigue crack growth rate data, da/dN vs stress intesity range ΔK, were fitted with a four parameter Weibull survivorship function. This curve fitting can be used for life estimation and establishment of ΔKth. The results show that load ratio and microstructure play a role in determining the fatigue crack threshold and fatigue crack growth behaviour.  相似文献   

13.
14.
Accumulative damage model based on the hysteresis strain energy density is proposed for predicting fatigue crack growth. Investigated is the application of sinusoidal loading on an edge crack whose growth rates are obtained by specifying the number of cycles, ΔN, for each growth step. The corresponding increment of crack growth, Δa, is calculated by having the accumulated local strain energy density to reach certain critical value, (dW/dV)c. As it is to be expected, each growth increment Δa increases up to the point of unstable rapid fracture. The growth rate da/dN versus a data are generated from the nonlinear incremental theory of plasticity. Because of the complexities involved in the stress and subcritical crack growth analysis, the finite element procedure is adopted such that the grid pattern is readjusted for each step of crack growth. Results for the edge crack specimen are displayed graphically and compared with those for the center cracked specimen made of the same material. The different growth characteristics are discussed and expected because material damage by fatigue is sensitive to changes in load history, specimen geometry and crack configuration. Insight into these nonlinear effects provides a means for establishing the range of applicability of the linear fatigue growth models. Discussed in particular are the da/dN vs δk1 and AS relations where the linear theory of elasticity is used to calculate ΔK1 and ΔS.  相似文献   

15.
Stress and strain field of a propagating fatigue crack and the resulting crack opening and closing behavior were analysed. It was found that a propagating fatigue crack was closed at tensile external loads due to the cyclically induced residual stresses. Strain range value Δ?y in the vicinity of the crack tip was found to be closely related with the effective stress intensity factor range ΔKeff which was determined on the basts of the analytical crack opening and closing behavior at its tip. Application of this analysis to the non-propagating fatigue crack problem and the fatigue crack propagation problems under variable stress amplitude conditions revealed that both Δ?y and ΔKeff were essential parameters governing fatigue crack growth rate.  相似文献   

16.
It is generally accepted that the fatigue crack growth (FCG) depends mainly on the stress intensity factor range (ΔK) and the maximum stress intensity factor (Kmax). The two parameters are usually combined into one expression called often as the driving force and many various driving forces have been proposed up to date. The driving force can be successful as long as the stress intensity factors are appropriately correlated with the actual elasto-plastic crack tip stress-strain field. However, the correlation between the stress intensity factors and the crack tip stress-strain field is often influenced by residual stresses induced in due course.A two-parameter (ΔKtot, Kmax,tot) driving force based on the elasto-plastic crack tip stress-strain history has been proposed. The applied stress intensity factors (ΔKappl, Kmax,appl) were modified to the total stress intensity factors (ΔKtot, Kmax,tot) in order to account for the effect of the local crack tip stresses and strains on fatigue crack growth. The FCG was predicted by simulating the stress-strain response in the material volume adjacent to the crack tip and estimating the accumulated fatigue damage. The fatigue crack growth was regarded as a process of successive crack re-initiations in the crack tip region. The model was developed to predict the effect of the mean and residual stresses induced by the cyclic loading. The effect of variable amplitude loadings on FCG can be also quantified on the basis of the proposed model. A two-parameter driving force in the form of: was derived based on the local stresses and strains at the crack tip and the Smith-Watson-Topper (SWT) fatigue damage parameter: D = σmaxΔε/2. The effect of the internal (residual) stress induced by the reversed cyclic plasticity manifested itself in the change of the resultant (total) stress intensity factors controlling the fatigue crack growth.The model was verified using experimental fatigue crack growth data for aluminum alloy 7075-T6 obtained under constant amplitude loading and a single overload.  相似文献   

17.
Fracture mechanics approach is applied to fatigue crack initiation at the tips of deep, blunt notches including those with very small notch-tip radius. The theoretical relations between the stress intensity range ΔKρ and the notch-tip radius ρ for a fixed life for crack initiation were derived based on the models of dislocation-dipole accumulation and blocked slip-band. Those are approximated by a simpler equation: ΔKρΔKo = (1 + ρ/ρ0)12 where ΔK0 and ρ0 are material constants which are related to the fatigue strength of smooth specimens Δρ0 as Δρ0 = 2ΔK0(πρ0)12. The results of experiments done with bluntly notched compact tension specimens of a structural low-carbon steel agree with the above relation between ΔKgrΔKo and ρ/ρo. The method to predict ΔKo, ρo and Δρo from the fatigue data of cracked and smooth specimens is proposed.  相似文献   

18.
Fatigue-crack propagation rates in ASTMA612 Grade B steel were investigated at room temperature and ?100°F (?73°C) with R ratio = ?0.1 and +0.67. The data were evaluated in terms of the crack propagation rates (da/dN) as a function of the alternating stress intensition (ΔK), according to da/dN = e+(v ? e)(? 1n (1 ? ΔK/Kb))t/k. It was found that crack growth rates were increased due to increasing R ratio. Also the dependence of crack growth rates on R ratio is strongest at the lowest crack growth rates where a ΔK fatigue threshold is established. Crack growth rates were decreased due to decreasing test temperature in the slow crack growth region. However, it was found that crack growth rates were increased due to decreasing test temperature in the fast crack growth region near the upper instability asymptote. Decreased test temperature and increased R ratio interact synergistically to increase crack growth rates for the entire range of ΔK.  相似文献   

19.
The extent of applicability of linear elastic fracture mechanics (LEFM) to high temperature fatigue-crack growth in 12 and 1% Cr-Mo-V turbine-casing steels has been established using a range of specimen geometry and thickness. Crack growth rates exceeded those at room temperature and generally increased with declining frequency. The relation for crack growth was: dL/dN = CΔK2, where L was cracuength, N cycle number, C a frequency-dependent term and ΔK the stress intensity amplitude. There was little effect of increasing the maximum stress intensity of the cycle (or mean stress level) provided widespread creep deformation was avoided. A limiting crack tip displacement (C.O.D.) for LEFM analysis was established for the cast Cr-Mo-V steels examined.The relative contributions of creep and oxidation to fatigue-crack growth were examined. Oxidation was found to predominate at high frequencies and low amplitudes, whilst creep effects were significant at low (10?3 Hz) frequencies.  相似文献   

20.
Acoustic emissions of fatigue crack growth have been monitored and quantitatively correlated with growth rate and the applied range of stress intensity for high cycle fatigue of 2024-T851 aluminum alloy. The data suggest a more cogent relationship for acoustic emissions and the applied range of stress intensity rather than between acoustic emissions and the average crack growth rate. Since nearly all crack growth is expected during the maximum load portion of the fatigue cycles, only the emissions from the acoustic events in the vicinity of the peak load were incorporated in correlations with da/dn and ΔK. Large amplitude emissions in the proximity of the minimum cyclic load were also detected. Because of their characteristics, these emissions are attributed to crack surface interference and, consequently, were not included in the correlation analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号