首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During immune injury, activation of endothelial cells by inflammatory cytokines stimulates leukocyte adhesion to the endothelium, turns the endothelium from an anticoagulant surface to one that is frankly procoagulant, and results in the release of vasoactive mediators and growth factors. Cytokine activation of endothelial cells also results in increased endothelial cell TGF-beta 1 synthesis and enhanced activation of latent TGF-beta, the latter involving a shift of plasmin production from the apical to subendothelial surface. In cytokine-stimulated endothelial cells, TGF-beta hinders leukocyte adhesion and transmigration via inhibition of IL-8 and E-selectin expression. TGF-beta also profoundly diminishes cytokine-stimulated inducible nitric oxide synthase production and instead augments endothelial nitric oxide synthase expression. Thus, some of the TGF-beta actions on endothelium during immune activation can viewed as immunosuppressive. TGF-beta also influences mechanisms of vascular remodeling during the healing phase of immune injury. It stimulates PDGF-B synthesis by endothelial cells, causes bFGF release from subendothelial matrix, and promotes VEGF synthesis by non-endothelial cells. Together these mediators control angiogenesis, a critical component of the vascular repair phenomenon. Further, endothelial cell derived PDGF-B and bFGF influence the proliferation and migration of neighboring cells. Thus, endothelial cells and TGF-beta actions on the endothelium play important roles both during the initial phase of immune injury and during the later remodeling phase.  相似文献   

2.
Cyclophosphamide (CP) is associated with significant pulmonary toxicity; however, the mechanism of toxicity is unknown. An in vitro endothelial model of injury was developed to assess the direct toxic effects of CP, CP derivatives and CP metabolites on cultured endothelial cells. Injury to 51Cr-labeled bovine artery pulmonary endothelial (BPAE) cells was quantified by the release of 51Cr from BPAE cells incubated for 18 h with injury expressed as a cytotoxic index. Because CP activation and metabolism occurs primarily in liver, assays assessing CP effects were conducted in the presence of an hepatic microsomal enzyme system. Upon activation, CP produces 4-hydroxycyclophosphamide, acrolein (ACR) and the alkylating metabolite, phosphoramide mustard. Nonactivated CP demonstrated no toxicity to BPAE cells within 18 h; whereas, activated CP induced significant BPAE cell injury in a concentration-dependent manner. Specific metabolites of CP 4-hydroxycyclophosphamide and ACR were markedly more toxic to BPAE cells than phosphoramide mustard. Sulfhydryl-rich compounds, S-2-(3-aminopropylamino)ethylphosphoric acid (WR-2721) and N-acetylcysteine, significantly reduced 4-hydroxycyclophosphamide- and ACR-induced injury but had no significant protective effect against phosphoramide mustard-induced toxicity. These studies suggest 1) CP is not metabolized within pulmonary artery endothelial cells, 2) ACR may be the principal CP metabolite involved in mediating direct injury to pulmonary artery endothelial cells and 3) sulfhydryl-rich agents may be effective in reducing CP-induced damage to critical endothelial cell barriers.  相似文献   

3.
Thrombotic complications may occur early after marrow transplantation and many data suggest that endothelial injury plays a pivotal role in their pathogenesis. Since plasma thrombomodulin and P-selectin are thought to be of value as markers of vascular endothelial cell membrane injury, we investigated their plasma concentration in bone marrow transplant patients aiming better to clarify the degree of endothelial involvement. Plasma thrombomodulin and P-selectin were monitored in 25 patients without thrombotic complications before transplant, on day 0 and weekly for 1 month thereafter, while in three patients who developed VOD monitoring continued until day +52. These proteins were in the normal range in all the uncomplicated patients and in two with reversible VOD, while they were always very high in the only patient who developed very severe and lethal VOD. In conclusion, we suggest that endothelial activation/damage occurs rarely in the course of BMT for hematological malignancies; we were able to document endothelial injury in only one patient with very severe thrombotic complication.  相似文献   

4.
We have recently developed a model of thrombotic microangiopathy with injury to the glomerular endothelial cell (GEN) induced by heterologous antibody to rat GEN. In addition to GEN injury rats developed glomerular platelet aggregation and fibrin deposition, acute renal failure, and acute tubular necrosis with interstitial inflammation. To study the role of complement in mediating this lesion, we induced the disease in normal complement PVG rats and measured the effects of generalized complement depletion with cobra venom factor (CVF) and of selective C6 deficiency using genetically C6 deficient PVG animals. Complement sufficient rats developed severe endothelial injury accompanied by platelet aggregation, fibrin deposition, decrease in endothelial cells assessed by antibody staining in the glomerulus, and macrophage infiltration. These changes were associated with marked reduction in renal function. These features were either absent or markedly diminished in complement depleted or C6 deficient rats. This demonstrates that C5b-9, the terminal product of activation of the complement cascade, plays an important role in the pathogenesis of this immune renal microvascular endothelial injury model. Thus, the complement system may play a pathogenic role in renal microvascular diseases such as thrombotic microangiopathy.  相似文献   

5.
6.
BACKGROUND & AIMS: Low temperature preservation causes unique liver injuries to the sinusoidal lining cells characterized by endothelial cell detachment and rounding and Kupffer cell activation. These changes are similar to those observed during the early stages of angiogenesis. The aim of this study was to investigate if cold preservation injury is caused by the activation of angiogenic mechanisms. METHODS: Livers were obtained from rats pretreated with three well-known antiangiogenic agents (minocycline, interferon alfa-2b, and fumagillin) and were stored for various durations in cold preservation solutions. The effects of the drugs were evaluated by morphometric assessment of endothelial cell injury in H&E, trypan blue, and immunostained (TIE2/Tek) biopsy specimens. Graft functions and survival were evaluated in isolated perfused rat liver and arterialized orthotopic liver transplantation models. RESULTS: Sinusoidal lining cell integrity and viability were significantly improved in animals pretreated with the drugs. Reperfusion injury and survival were also better in pretreated animals. Interferon alfa was the most potent agent, reducing injury even in livers preserved in the current most commonly used solution (University of Wisconsin solution). CONCLUSIONS: Cold preservation injury of liver may be the results of angiogenic mechanisms. This novel observation provides a rationale for improved liver preservation using antiangiogenic agents.  相似文献   

7.
8.
Cold ischaemia-reperfusion injuries are an unavoidable feature of current liver transplantation procedures. Damage to liver grafts accures mainly from hypothermic storage under hypoxic conditions (cold ischaemia), from sustained ischaemia during implantation into the recipient (rewarming ischaemia) and from restoration of blood and oxygen to the graft (reperfusion injury). These three stages are characterized by progressive deteriorations in hepatic function, with sinusoidal endothelial cells most affected during cold ischaemia. Activation of Kupffer cells (hepatic macrophages) at reperfusion augments damage to both endothelial and parenchymal cells by the release of numerous compounds which initiate and perpetrate injury and impair the hepatic microcirculation. The key events in the expression of ischaemia-reperfusion injury are detailed and therapeutic interventions are described which target these steps. The treatments discussed include University of Wisconsin (UW) preservation solution, calcium channel blockade, inhibitors of Kupffer cell activation, promoters of microvascular vasodilation, hepatoprotectants and the use of anti-oxidants.  相似文献   

9.
The early belief that the haemostatic system has no active role in the formation of the atheromatous plaque is no longer tenable. Rather, the association between hypercholesterolaemia and atherosclerosis appears to arise in part because of various effects of high concentrations of LDL and VLDL particles on the cellular and humoral components of the system, thereby promoting plaque growth and thrombosis. These may be summarized as follows: 1. High concentrations of native LDL have been reported to promote the adhesion of monocytes to the endothelial cell, suggesting that the latter undergoes a form of activation upon such exposure. Oxidized LDL is more potent in this respect, and persistent exposure of endothelium to such particles can eventually lead to cell injury. 2. Activated endothelial cells acquire characteristics on their luminal surface conducive to thrombin generation and fibrin production. Thrombin has several actions on the endothelial cell, monocyte, smooth muscle cell and platelet which in the presence of hypercholesterolaemia will promote the formation of atheroma. 3. Oxidatively modified LDL can activate circulating monocytes, when they also acquire procoagulant properties which favour thrombin production. 4. Platelets show an increased tendency to aggregate when exposed to hypercholesterolaemic plasma. This effect may arise in part because the platelet of the hypercholesterolaemic patient expresses an increased number of fibrinogen binding sites on its surface following activation by agonists such as ADP. These hyperaggregable platelets adhere to activated endothelial cells which express von Willebrand factor on their surface, and to subendothelial proteins exposed in the gaps that open between injured endothelial cells. Platelets exposed to raised LDL levels also show a reduced sensitivity to prostacyclin, an antiaggregatory agent. Oxidatively modified LDL has been reported to stimulate aggregation of platelets in the absence of other agonists such as ADP or thrombin (spontaneous aggregation). 5. Platelet aggregation and fibrin deposition at sites of endothelial injury will create microthrombi which become incorporated into the lesion by organization, thereby increasing the fibrous and cellular content of the atheromatous plaque. 6. Lipolysis of triglyceride-rich lipoproteins at the endothelial cell surface leads to transient activation of the coagulation mechanism with activation of factor VII. Activated factor VII is a potent procoagulant when it forms a complex with tissue factor in the atheromatous lesion. Persistent hypertriglyceridaemia is accompanied by raised concentrations of factor X, factor IX, factor VII and prothrombin. 7. Hypertriglyceridaemia is associated with an increased plasma concentration of PAI-1 and a reduction in plasma fibrinolytic activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Myocardial injury after ischemia (I) and reperfusion (R) is related to leukocyte activation with subsequent release of cytokines and oxygen-derived free radicals as well as complement activation. In our study, the cardioprotective effects of exogenous C1 esterase inhibitor (C1 INH) were examined in a rat model of myocardial I + R (i.e., 20 min + 24 hr or 48 hr). The C1 INH (10, 50 and 100 U/kg) administered 2 min before reperfusion significantly attenuated myocardial injury after 24 hr of R compared to vehicle treated rats (P < .001). Further, cardiac myeloperoxidase activity (i.e., a marker of PMN [polymorphonuclear leukocyte] accumulation) in the ischemic area was significantly reduced after C1 INH treatment compared to vehicle treated animals (0.81 +/- 0.1, 0.34 +/- 0.13, 0.13 +/- 0.1 vs. 1.44 +/- 0.3 U/100 mg tissue, P < .001). In addition, C1 INH (100 U/kg) significantly attenuated myocardial injury and neutrophil infiltration even after 48 hr of reperfusion compared to vehicle treatment. Immunohistochemical analysis of ischemic-reperfused myocardial tissue demonstrated activation of classical complement pathway by deposition of C1q on cardiac myocytes and cardiac vessels. In addition, expression of the endothelial adhesion molecules P-selectin and intercellular adhesion molecule 1 (ICAM-1) was observed after reperfusion of the ischemic myocardium. In this regard, C1 INH administration abolished expression of P-selectin and ICAM-1 on the cardiac vasculature after myocardial ischemia and reperfusion. Blocking the classical complement pathway by exogenous C1 INH appears to be an effective means to preserve ischemic myocardium from injury after 24 and 48 hr of reperfusion. The mechanisms of this cardioprotective effect appears to be due to blocking of complement activation and reduced endothelial adhesion molecule expression with subsequent reduced PMN-endothelium interaction, resulting in diminished cardiac necrosis.  相似文献   

11.
Endothelial cell injury is a key event in the pathogenesis of atherosclerosis. Importantly, endothelial cells in lesion-prone regions, where atherosclerotic lesions preferentially develop, are characterised by increased endothelial cell turn-over rates suggesting a mechanistic link between endothelial cell turn-over with preceding cell death and the susceptibility to atherosclerotic plaque development. The activation of the cellular suicide pathway leading to apoptosis of the endothelial cell may be an initial step in the development of atherosclerotic lesions. This hypothesis is supported by the finding that proatherosclerotic factors such as angiotensin II, oxidized low density lipoprotein, reactive oxygen species, glucose and inflammatory cytokines have all been shown to induce apoptosis of endothelial cells. In contrast, the known atheroprotective factors, such as oestrogen, nitric oxide or anti-oxidants, prevented endothelial cell apoptosis. Furthermore, laminar flow, which seems to be one of the most potent endogenous anti-atherosclerotic factor as illustrated by the focal nature of atherosclerotic lesion development in areas with turbulent or low blood flow, protects endothelial cell from apoptotic cell death. The present article summarizes the effects of pro and anti-atherosclerotic factors on endothelial cell apoptosis and provides insights into the underlying signalling events.  相似文献   

12.
Human endothelial cells are injured by the action of leukocytes. We investigated the role of nitric oxide (NO) in the induction of injury to human pulmonary artery endothelial cells. NO has been a putative source of cytotoxic reactive oxygen species in some settings. Incubation of endothelial cells with neutrophils increased the release of lactate dehydrogenase activity and preloaded fura-2 from endothelial cells, indicating that neutrophils induce endothelial cell injury. This effect was augmented by treatment with carboxy-PTIO, which traps NO in the medium, or with L-NAME, an inhibitor of NO synthase. When endothelial cells were incubated with neutrophils stimulated by phorbol myristate acetate, an activator of protein kinase C, endothelial cell damage was further enhanced and the amount of NO in the medium was decreased. Dibutyryl cyclic AMP, a cell-permeable analogue of cyclic AMP, protected against neutrophil-induced endothelial cell injury and increased NO release into the medium. The effects of dibutyryl cyclic AMP were abrogated by treatment with H-89, a potent inhibitor of cyclic AMP-dependent protein kinase. The protective effect on neutrophil-induced endothelial cell injury by dibutyryl cyclic AMP was abolished by addition of carboxy-PTIO or L-NAME. Thus, our studies suggest that NO, presumably released from endothelial cells, protects against endothelial injury by activated neutrophils and the protective effect by cyclic AMP during coculture with activated neutrophils is mediated through the action of NO. However, when monocytes activated by lipopolysaccharide and IFN-gamma were used instead of neutrophils, endothelial cells were likewise injured, but a much higher level of NO was detected and injury was diminished by addition of carboxy-PTIO to the medium. These observations suggest that the high levels of NO released by activated monocytes contribute to endothelial injury, whereas low levels of NO protect endothelial cells against injury by neutrophils.  相似文献   

13.
Protease inhibitors such as aprotinin and urinastatin inhibited vascular endothelial cell injury induced by PMA-stimulated leukocytes, although their inhibitors did not suppress the production of active oxygen species released from leukocytes. On the other hand, in the presence of pancreas elastase (10 micrograms/ml), hydrogen peroxide (50 microM) caused severe injury of endothelial cells isolated from the bovine carotid artery (% specific 51Cr release, % SR = 42.9 +/- 3.3%), although the % SR elicited by elastase or hydrogen peroxide alone, respectively, was below 1%. Elastase and hydrogen peroxide acted synergistically on the injury of endothelial cells from the bovine carotid artery similarly to that in the endothelial cells isolated from the bovine coronary artery and human umbilical vein. Furthermore, elastase derived from both pancreas and leukocyte induced this synergistic action on endothelial cell injury. To clarify the mechanism of vascular endothelial cell injury induced by the combination of elastase and hydrogen peroxide, we examined the effects of various radical scavengers and protease inhibitors. Deferoxamine mesylate completely inhibited the endothelial cell injury, while protease inhibitors such as antitrypsin and macroglobulin had a protective effect. Pretreatment of endothelial cells with deferoxamine mesylate also protected against this cytotoxicity. These findings suggested that the synergistic effect of elastase and hydrogen peroxide on the endothelial cell injury is due to the production of hydroxylradical in the endothelium and that this synergistic action might be partially involved in the endothelial cell injury induced by activated leukocytes.  相似文献   

14.
Because of its location between blood and tissue, the endothelium is particularly vulnerable to hypoxic/reperfusion injury, but the mechanisms responsible for this injury are not known. A number of recent findings suggest that hypoxia and reperfusion injures neuronal cells via apoptosis. Apoptosis has recently been shown to depend on the activation of a class of proteases with homology to Interleukin-1 beta converting enzyme (ICE) protease. Therefore, we examined the effect of specific inhibitors of ICE-like proteases on hypoxic and reperfusion injury in cultured EAhy926 endothelial cells. Pretreatment of cells with ICE inhibitor II (Ac-YVAD-CMK), ICE inhibitor III (Z-Asp-2,6-dichlorobenzoyloxy-methylketone-Z-Asp-CH2-DCB+ ++), or ICE inhibitor IV (Ac-YVKD-CHO) (all at 10-100 microM) did not protect cells from hypoxic injury. However, pretreatment of cells with ICE inhibitor III and to a lesser extent with ICE inhibitor II, but not with ICE inhibitor IV, protected cells from reperfusion injury. The protective effect of ICE inhibitor III was not dependent upon pH, but was associated with decreased release of arachidonic acid from cells. These findings suggest that reperfusion injury to EAhy926 endothelial cells involves ICE-like proteases. The identity of the protease(s) is not known but it does not appear to be a YAMA-type protease based upon ICE inhibitor specificity. Our data also indicate that a potential target of this protease is phospholipase A2 (PLA2).  相似文献   

15.
Vascular endothelium activated by endotoxin and cytokines plays an important role in organ inflammation and blood leukocyte recruitment. Neutrophils, which are a homogeneous population of effector cells, are rapidly attracted in large numbers to sites of inflammation where they form an early response to infection or injury. Excessive production of various interleukins, TNF, arachidonic acid metabolites, and other substances by neutrophils and macrophages results in systemic endothelial cell injury, a fundamental problem. In the present study, we investigated in vitro the effects of thalidomide (THD) on activation of endothelial cells for enhanced transmigration of neutrophils by lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF), and interleukin-1 (IL-1). Modulation of endotoxin- and cytokine-induced neutrophil chemotaxis and respiratory burst by THD were also studied. Treatment of HUVEC with THD in combination with LPS, TNF, and IL-1, respectively, antagonized LPS-activated transmigration of neutrophils but stimulated the effects of TNF and IL-1. All of the agents used-THD, LPS, TNF, and IL-1-inhibited neutrophil chemotaxis. Addition of THD to the neutrophils had no effect on LPS-inhibited chemotaxis whereas the TNF- and IL-1-induced chemotaxis was modulated in a bimodal manner. However, THD failed to influence neutrophil respiratory burst activity. Results demonstrate that THD differentially affects mediator-induced activation of HUVEC and neutrophils.  相似文献   

16.
The integrity of endothelial cell monolayers, a critical requirement for barrier maintenance, is needed for the prevention of edema formation. To investigate the mechanisms by which 2-phenyl-4-quinolone (YT-1) provided protection against serotonin-induced exudation, rat heart endothelial cell cultures were used. In this study, serotonin and phorbol myristate acetate (PMA) caused endothelial cells to became permeable to macromolecules by causing cell contraction and intercellular gap formation. These responses were attenuated by staurosporine, a protein kinase C inhibitor. Further experiments showed that YT-1 (1) did not alter serotonin-mediated early signal events such as protein kinase C activation, (2) protected against serotonin-induced endothelial barrier dysfunction by increasing intracellular cAMP levels, (3) played a role in regulating adenylate cyclase activity, (4) reversed serotonin-induced permeability to macromolecules, an effect which did not correlate with intracellular cGMP concentrations. This study demonstrates a possible mechanism by which YT-1 protects endothelial function and preserves the microvasculature from pharmacologic injury by vasoactive agents.  相似文献   

17.
STUDY OBJECTIVES: Mechanical or inflammatory injury to pulmonary endothelial cells may cause impaired pulmonary gas exchange in acute mountain sickness (AMS) and noncardiogenic pulmonary edema in high-altitude pulmonary edema (HAPE). This study was designed to determine whether markers of endothelial cell activation or injury, plasma E- and P-selectin, were increased after ascent to high altitude, in AMS or in HAPE. DESIGN: We collected clinical data and plasma specimens in control subjects at sea level and after ascent to 4,200 m, and in climbers with AMS or HAPE at 4,200 m. Data analysis was performed using standard nonparametric statistical methods, and results reported as mean+/-SD. SETTING: National Park Service medical camp at 4,200 m on Mt. McKinley (Denali), Alaska. PATIENTS: Blood samples and clinical data were collected from 17 healthy climbers at sea level and again after ascent to 4,200 m, and from a different group of 13 climbers with AMS and 8 climbers with HAPE at 4,200 m. Climbers with AMS were divided into normoxic (n=7) and hypoxemic (n=6) groups. MEASUREMENTS AND RESULTS: Using an enzyme immunoassay technique, plasma E-selectin concentrations were found to be increased in the 17 control subjects after ascent to 4,200 m (17.2+/-8.2 ng/mL) as compared to sea level (12.9+/-8.2 ng/mL) (p=0.001). Plasma E-selectin concentrations were also increased in subjects with hypoxemic AMS (30.6+/-13.4 ng/mL) and HAPE (23.3+/-9.1 ng/mL) compared to control subjects at sea level (p=0.009). Increased plasma E-selectin concentration significantly correlated with hypoxemia (p=0.006). Plasma P-selectin concentrations were unchanged after ascent to 4,200 m and in subjects with AMS and HAPE. CONCLUSION: Because E-selectin is produced only by endothelial cells, increased plasma E-selectin after ascent to high altitude and in hypoxemic climbers with AMS and HAPE provides evidence that endothelial cell activation or injury is a component of hypoxic altitude illness.  相似文献   

18.
To evaluate the potential of tissue plasminogen activator (t-PA) as a marker of endothelial activation or injury, the dose-response relationship between reactive oxygen intermediates and t-PA release was investigated in isolated rat hearts. After stabilization the hearts were perfused for 10 minutes with different concentrations of hydrogen peroxide (H2O2) (0 (control perfusion), 20, 40, 80, 120, 160, or 200 microM) (n = 8 hearts/group), followed by 30 minutes recovery. Higher concentrations than 80 microM induced cardiac dysfunction and a dose-dependent release of lactate dehydrogenase, indicating myocyte injury. H2O2-concentrations of 80 microM and more caused a significant, but temporary t-PA release. Peak t-PA release occurred more rapidly with higher concentrations, but otherwise there was no difference dependent on the H2O2-dose. The effects of H2O2 (120 or 200 microM) on t-PA release were also compared to the effects of bradykinin. Both were given for 10 minutes as above, and the procedure was repeated after 10 minutes recovery. Bradykinin (50 or 500 nM) released t-PA with the same magnitude, but with peak values occurring earlier than t-PA release induced by H2O2. Bradykinin, but not H2O2, induced t-PA release during the second exposure, suggesting different mechanisms of release. In conclusion: Perfusion with H2O2 leads to a dose-dependent myocardial injury in isolated rat hearts. H2O2 also causes an acute t-PA release without dose-dependency, suggesting an all or nothing response of the endothelium. t-PA may be used as an indicator of, but cannot quantify endothelial activation or injury.  相似文献   

19.
Angiotensin II (Ang II) importantly contributes to the pathobiology of atherosclerosis. Since endothelial injury is a key event early in the pathogenesis of atherosclerosis, we tested the hypothesis that Ang II may injure endothelial cells by activation of cellular suicide pathways leading to apoptosis. Human umbilical venous endothelial cells (HUVECs) were incubated with increasing doses of Ang II for 18 hours. Apoptosis of HUVECs was measured by ELISA specific for histone-associated DNA fragments and confirmed by DNA laddering and nuclear staining. Ang II dose-dependently induced apoptosis of HUVECs. Simultaneous blockade of both the AT1 and AT2 receptor prevented Ang II-induced apoptosis, whereas each individual receptor blocker alone was not effective. Selective agonistic stimulation of the AT2 receptor also dose-dependently induced apoptosis. Ang II-mediated as well as selective AT2 receptor stimulation-mediated apoptosis was associated with the activation of caspase-3, a central downstream effector of the caspase cascade executing the cell death program. Specific inhibition of caspase-3 activity abrogated Ang II-induced apoptosis. In addition, the NO donors sodium nitroprusside and S-nitrosopenicillamine completely inhibited Ang II-induced apoptosis and eliminated caspase-3 activity. Thus, Ang II induces apoptosis of HUVECs via activation of the caspase cascade, the central downstream effector arm executing the cell death program. NO completely abrogated Ang II-induced apoptosis by interfering with the activation of the caspase cascade.  相似文献   

20.
The vascular renin-angiotensin system (RAS) is regulated independently from circulating RAS and plays a role in the local regulation of vascular tone, the modulation of sympathetic activity and vascular remodeling. Endothelial cells are a major source of angiotensin converting enzyme (ACE), which produces angiotensin II and degrades bradykinin, in normal arteries. Mechanical stress such as transmural pressure, stretch stress and shear stress appear to contribute to the regulation of endothelial ACE activity. In contrast, vessels with intimal proliferation such as atheromatous plaque and neointima following balloon injury show expression of ACE in smooth muscle cells and macrophages in the intimal lesions. Activation of ACE in intimal SMC may relate to a phenotypic change of SMC from the contracting type of the synthetic type. Activation of ACE in macrophages is also related to the transformation of macrophages from monocytes. Concerning the role of the activated RAS, elevated blood pressure and vascular tonus by angiotensin II are candidates of vascular injury and plaque rupture. Angiotensin II stimulates migration and proliferation of smooth muscle cells and production of extracellular matrix. Furthermore, angiotensin II increases oxidized-LDL which may be related to the forming of macrophages. These evidence suggest that activation of vascular RAS following endothelial dysfunction/injury play an important role in the pathogenesis of vascular remodeling and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号