首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提高热送连铸坯温度的试验研究   总被引:1,自引:1,他引:0  
采用远红外非接触测温和射钉法对武钢三炼钢的板坯连铸机典型二冷模式下铸坯的表面温度及凝固坯壳厚度进行了研究,发现通过矫直区进入水平段之后铸坯表面温度持续降低,机尾附近铸坯表面温度仅为710~820℃。根据坯壳厚度变化得出的典型二冷模式下综合凝固系数K为24~27mm/min^1/2,根据凝固终点与K的关系,将浇铸低碳铝镇静钢时的拉速由1.1m/min左右提高到1.4~1.5m/min,使铸坯的凝固终点向机尾延伸,铸坯出机表面温度提高到了920~940℃。  相似文献   

2.
提高热送铸坯温度的试验研究   总被引:5,自引:1,他引:4  
采用远红外非接触测温和射钉法对武钢三炼钢新近投产的板坯连铸机典型二冷模式下铸坯的表面温度及凝固坯壳厚度进行了研究,发现通过矫直区进入水平段之后铸坯表面温度持续降低,机尾近铸坯表面温度仅为710-820℃。根据坯壳厚度变化得出的典型二冷模式下综合凝固系数K在24-27mm/min^1/2之间,根据凝固终点与K的关系,将浇铸低碳铝镇静钢时拉速由以往的1.1m/min左右提高到1.4-1.5m/min,使铸坯的凝固终点向机尾延伸,铸坯出机表面温度提高到了目前920-940℃。  相似文献   

3.
通过大型通用有限元软件ANSYS建立铸坯凝固过程有限元仿真分析模型,在拉速0.25~0.35m/min,钢水过热度20℃的条件下,对20钢Φ中600mm和40Cr钢Φ500 mm圆坯连铸过程进行了计算和分析,得出距液面0~32 m时铸坯表面温度变化曲线。计算结果表明,当20钢Φ600 mm圆坯的拉速为0.3 m/min时,结晶器出口坯壳厚度为30.9 mm,结晶器出口铸坯温度为1050℃,二冷区表面最低温度978℃铸坯在距液面19.71 mm处完全凝固。Φ600 mm圆坯连铸机20钢生产实践表明,拉速0.25 m/min,结晶器出口铸坯表面温度为1048℃,二冷区表面最低温度为918℃,与模拟结果相似。  相似文献   

4.
通过ANSYS软件建立了37Mn5钢Φ210 mm圆坯连铸的传热模型,研究了在铸坯传热过程中铸机拉速1.3~1.5 m/min,钢水过热度15°~60°,二冷比水量0.58~0.78 L/kg对铸坯表面温度、凝固坯壳厚度和凝固终点位置的影响。结果表明,控制稳定的较低拉速、低过热度、较弱二冷比水量可有效地避免37Mn5钢Φ210mm铸坯裂纹的形成,提高铸坯的冶金质量。  相似文献   

5.
应用射钉法测量板坯凝固坯壳的厚度   总被引:1,自引:0,他引:1  
结合鞍钢连铸机的生产实际情况,采用射钉法测定二冷区内的凝固坯壳厚度,并计算铸坯凝固系数.测量结果表明,两个测量钢种在2.6m/min拉速下,连铸坯坯壳厚度的实际测量结果与连铸机二级系统的计算结果基本一致.整个凝固过程坯壳厚度生长符合平方根定律.  相似文献   

6.
采用射钉方法对国内某钢厂中厚板铸机生产SPHC钢种铸坯凝固坯壳厚度进行了测量。结果显示,铸机在现有设备和冷却条件下,拉速1.50m/min时,凝固终点的综合凝固系数K=27.4mm/min0.5。该结果为二冷模型和扇形段轻压下工艺优化提供了可靠依据。  相似文献   

7.
针对连铸小方坯的中心疏松等质量缺陷,建立了凝固传热数学模型,以研究二冷强度对连铸小方坯凝固过程的影响规律,优化二冷制度,改善铸坯质量.本文基于射钉和测温实验所建立的小方坯凝固传热模型精细度较高,用此模型深入研究二冷喷嘴的数量和喷射范围对小方坯凝固传热的影响;经验证,模拟结果与实测结果误差在1.7%以内.利用该模型定量分析了二冷强度对铸坯温度,凝固坯壳厚度和凝固终点的影响规律.结果表明,随着二冷强度的增大,二冷区内的铸坯表面中心温度降低,而进入空冷区后则逐渐趋于一致.二冷强度每增加10%,足辊段出口处温度平均降低8℃,二冷一段出口处温度平均降低10.75℃,二冷二段出口处温度平均降低10.75℃,二冷三段出口处温度平均降低9.75℃,铸坯凝固终点缩短约0.168 m.  相似文献   

8.
基于传热学基本原理、凝固理论和有限单元法,建立了凝固传热有限差分数学模型,对连铸凝固全过程进行模拟分析,结果表明,拉速越大,铸坯中心及表面温度越高,出结晶器坯壳厚度越薄;过热度增大,铸坯中心及表面温度均上升,出结晶器坯壳厚度减薄;冷却水量相对增大时,铸坯出结晶器坯壳厚度增大,二冷区温度下降较快。连铸坯凝固模型可用来确定常规拉速范围及不同拉速下的凝固壳厚度、凝固末端位置以及铸坯表面温度分布。  相似文献   

9.
 以某钢厂圆坯连铸机为研究对象,建立了连铸坯凝固传热模型。在不同拉速下对280 mm断面圆坯二次冷却过程进行仿真优化,确定了16MnNb钢合适的二冷制度。根据仿真结果,在最小工作拉速(0.9 m/min)下,矫直点处铸坯内弧表面中心温度为947 ℃,有效避开了铸坯的二次低延性区。在最大工作拉速(1.2 m/min)下,铸坯出结晶器时,其凝固坯壳厚度为19 mm,二冷初期产生漏钢等质量问题的可能性较小。不同拉速下,横断面温度场分布均匀。经低倍检测发现,铸坯表面及内部质量良好,无裂纹、疏松、缩孔等质量缺陷。  相似文献   

10.
李永林  赵沛  仇圣桃  张建平 《钢铁》2006,41(1):32-35
采用分段线性的结晶器和二冷拉矫段热流密度表示方法,对车轮钢圆坯的宏观凝固过程进行了流场、温度场和凝固的耦合数学模拟.计算结果与实测数据吻合,表明数学模型可靠准确地反映了实际情况.由于拉速变化引起计算空间内质量流量的变化,圆坯的表面温度和坯壳厚度受拉速强烈影响.二冷拉矫段热流密度的变化反映了散热方式随温度变化进行的自我调节.保温段对圆坯表面温度回升有明显影响,并将凝固终点推后大约1 m.  相似文献   

11.
以钢厂断面尺寸为Φ800 mm圆坯Q355NE为研究对象,建立大圆坯传热模型,在不采用结晶器电磁搅拌的条件下,研究拉速和过热度对凝固过程的影响规律。结果表明:拉速对坯壳厚度、凝固终点位置和中心固相率的影响高于过热度,拉速每增加0.02 m·min-1,凝固终点后移2.6 m左右;过热度升高10℃,凝固终点后移0.21 m左右。实际生产中,二冷比水量0.18 L·kg-1、过热度25℃、拉速0.14 m·min-1时,出结晶器坯壳厚度超过43 mm,末端电磁搅拌充分发挥作用,铸坯中心疏松和中心缩孔较结晶器电磁搅拌(300 A/1.5 Hz)、二冷比水量0.18 L·kg-1、过热度25℃、拉速0.16 m·min-1工艺有所改善。  相似文献   

12.
基于热量平衡原理建立了大方坯连铸过程的传热数学模型,通过对二冷区的分段和联立方程组求解,可以快速获得二冷区指定位置铸坯的坯壳厚度、表面温度、凝固潜热、散热等热状态参数。以某钢厂的大方坯连铸机生产45号钢为研究背景的数值模拟和现场测温表明,铸坯断面尺寸为260mm×340mm,铸机拉速为0.5m/min、0.6m/min时,模型的计算结果符合凝固规律,计算温度与实测温度的误差小于2%,计算结果可为大方坯动态轻压下工艺的优化提供可靠的依据。  相似文献   

13.
 薄腹板异形坯更体现了近终形的特点。采用有限元数值模拟计算了薄腹板异形坯连铸温度场,分析了不同拉速、比水量对连铸过程温度、坯壳厚度和液芯长度的影响。结果表明:异形坯不同位置的温度和坯壳厚度不均匀,当异形坯腹板较薄时,腹板处凝固传热较慢,腹板处和R角处坯壳最薄弱,比翼缘边部薄约4mm;拉速每提高0.1m/s,异形坯出结晶器时的表面温度会提高约80~100℃,坯壳厚度会减薄0.8~1.2mm,液芯长度增加1.2~1.6m;比水量每提高0.05L/kg,异形坯出二冷段时的表面温度会降低约8~16℃,液芯长度缩小0.13m。  相似文献   

14.
在考虑二冷边界换热的条件下,建立了与厚板坯连铸机相适应的传热数学模型。用远红外测温仪测试X65管线钢230 mm×1650 mm铸坯表面温度,实验结果同模拟结果吻合较好。应用数学模型,对不同拉速下管线钢的连铸凝固过程进行了仿真计算,分析了拉速对出结晶器坯壳厚度、铸坯表面温度和液芯长度的影响,得出在给定的二冷条件下,为得到合理的铸坯表面温度,管线钢的拉速应为0.9~1.2m/min。  相似文献   

15.
 根据京唐高拉速试验特点,结合板坯连铸机设备和洁净钢连铸工艺特点和要求,建立连铸板坯凝固传热模型并结合射钉法测量综合预测了1.9~2.4 m/min高拉速条件下铸坯的凝固坯壳厚度和凝固终点位置。综合研究表明,结合射钉试验和数值模拟能更精确跟踪铸坯的凝固进程,为高拉速试验提供准确的凝固信息,并能为评价连铸机综合冷却能力、优化二冷制度和轻压下工艺提供合理的参考信息。  相似文献   

16.
建立了Q345E钢Φ600 mm大圆坯凝固传热模型,利用Procast软件对其连铸凝固过程进行了数值模拟,并通过射钉试验结果验证。研究结果表明:浇铸温度对铸坯的表面与中心温度以及固液相分布影响很小;拉速每增加0.02 m/min,铸坯表面温度无明显变化,糊状区向前移动,凝固末端离结晶器液面距离增加约1.75 m;二冷比水量每增加0.01 L/kg,其二冷区表面温度约降低30℃,糊状区向后移动少量,凝固末端后移0.3 m左右;适宜的工艺条件为浇铸温度1 539℃、拉速0.22 m/min、二冷比水量0.08 L/kg。实际生产的Q345E钢Φ600 mm大圆坯中心缩孔0.5级,中心疏松1.0级,碳偏析指数不大于1.09,完全满足标准要求。  相似文献   

17.
建立了板坯连铸过程中,垂直拉坯方向传热的二维切片跟踪铸坯凝固数学模型.利用有限元软件ANSYS对板坯连铸凝固过程进行了瞬态热分析,并进行了射钉实验验证.对不同的过热度,不同的拉速(1.0和1.1 m/min)条件下,切片各点随时间变化的温度分布,以及铸坯壳厚度进行计算,并确定凝固末端位置.结果表明:随着过热度、拉速的增加,凝固末端位置距离结晶器液面变远;在合理的范围之内,拉速增加,铸坯表面温度增加,有助于防止铸坯表面裂纹的产生及提高板坯的生产效率.  相似文献   

18.
为控制线材轧制用连铸小方坯质量,应用数值模拟软件对鞍钢股份有限公司炼钢总厂120 mm×120 mm小方坯连铸凝固过程进行模拟。模拟结果表明,在合理的冷却制度下,过热度低于35℃,拉速约为3.0 m/min的条件下,可以将结晶器出口坯壳厚度、铸坯液芯长度和铸坯表面温度控制在合适的范围内,并防止铸坯表面及内部产生缺陷、保证浇铸安全。  相似文献   

19.
为了精确掌握连铸机的综合冷却特性,验证铸机模型计算的准确性,进而为优化二次冷却制度提供依据,采用射钉法分别对新钢3号特厚板连铸机中碳钢和高碳钢进行了射钉试验,测量出典型工况条件下矫直区前后位置处铸坯凝固坯壳厚度,并以测得的凝壳厚度为边界模拟预报出凝固终点的位置。从模型计算预报的结果来看,中碳钢在典型工况条件下凝固终点的位置距离弯月面的距离为33.7m,而高碳钢在典型工况条件下凝固终点的位置距离弯月面的距离为27.6m。射钉试验与凝固模拟相结合预报的凝固末端为末端大压下位置设定提供了理论依据。  相似文献   

20.
根据钢厂新建Φ600 mm圆坯连铸机的主要技术参数,建立柱坐标一维非稳态连铸坯凝固传热数学模型,运用有限差分法求解并编制相关程序,分析拉速、过热度、冷却强度对铸坯温度的影响,实现在给定水量下连铸坯温度场的计算。浇铸Φ500 mm轴承钢GCr15SiMn计算得出拉速每提高0.1 m/min,出结晶器处凝固坯壳厚度减薄约7.9 mm,凝固终点延长6.7 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号