首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Longitudinal recording is limited at high bit densities by recording demagnetization, self-demagnetization, and adjacent-bit demagnetization, which occur during the writing-demagnetization processes. To minimize these adverse effects it becomes necessary to resort to extreme scaling of the media parameters and their thickness, with the consequence of greatly increasing the difficulty of fabrication and the cost of such optimized media. Pure perpendicular recording circumvents these writing and demagnetization problems because of the strong head coupling of a single pole head with a double layer medium, positive interaction between adjacent bits, and low self-demagnetization at high bit densities. Therefore, it does not require any extreme scaling of the media magnetic parameters and their thickness. Of great interest, at least for the next several years, are the quasi-perpendicular particulate media which can support perpendicular magnetization. These include the isotropic, high-squareness media, and oriented perpendicular media employing particles with uniaxial crystalline or shape anisotropies. The attractiveness of these media derives from their excellent recording performance and from the fact that they preserve the existing head/media interface and they utilize existing coating facilities which should reflect favorably on their cost. In this paper the advantages and disadvantages of the various media under development for high density magnetic recording are compared, and predictions are made for their potential application in future systems.  相似文献   

2.
This paper reviews research results for the head, medium and recording properties of a perpendicular recording system. Superior bit density characteristics obtained so far indicate that perpendicular recording is basically free from demagnetization in the high density region and that it will establish a new field of recording technology in the future. The prediction is explained in the context of complementary profiles of longitudinal and perpendicular recording. At the very beginning of magnetic recording, a perpendicular-type head was considered but abandoned because a suitable medium did not exist. Progress in material science has enabled us to develop a perpendicular recording medium which is very well suited for ultra high density recording. As so often happens, history has repeated itself through another study of perpendicular recording.  相似文献   

3.
The storing of recorded bits in a perpendicular orientation holds great promise for high linear density recording systems. However, the most common embodiment of perpendicular recording (the probe head/double layer media) has several unresolved issues complicating its integration into commercial disk drives. The major issues include media relaxation, head induced media erasure, resolution limitations due to head-to-underlayer spacing constraints, and extreme sensitivity to stray magnetics fields, which are complex and highly interrelated. It is concluded that the realization of perpendicular recording in commercial disk drives will require new transducer and media designs that solve these problems  相似文献   

4.
The potential of perpendicular magnetic recording using a single-pole head and a double-layered medium has been investigated theoretically by computer analysis and compared with that of longitudinal magnetic recording. In conventional longitudinal recording, a recording demagnetizing loss due to the change of magnetization mode from semicircular to circular shapes occurs with increasing recording level at high bit density. In perpendicular magnetic recording, the perpendicular magnetization mode is maintained regardless of recording level even at an extremely high bit density of 571 kFRPI. This indicates that the perpendicular recording medium has a very high recording resolution, where a single bit size approaches several diameters of the microcrystalline particles of the Co-Cr layer. An ultrahigh density at which the recording area for 1 bit will reach 1 μ2 at present and 500 Å2 in future should be possible  相似文献   

5.
Thermal effect limits in ultrahigh-density magnetic recording   总被引:4,自引:0,他引:4  
In current longitudinal magnetic recording media, high areal density and low noise are achieved by statistical averaging over several hundred weakly coupled ferromagnetic grains per bit cell. Continued scaling to smaller bit and grain sizes, however, may prompt spontaneous magnetization reversal processes when the stored energy per particle starts competing with thermal energy, thereby limiting the achievable areal density. Charap et al. have predicted this to occur at about 40 Gbits/in2. This paper discusses thermal effects in the framework of basic Arrhenius-Neel statistical switching models. It is emphasized that magnetization decay is intimately related to high-speed-switching phenomena. Thickness-, temperature- and bit-density dependent recording experiments reveal the onset of thermal decay at “stability ratios” (KuV/KBT)0 ≃35 ± 2. The stability requirement is grain size dispersion dependent and shifts to about 60 for projected 40 Gbits/in 2 conditions and ten-year storage times. Higher anisotropy and coercivity media with reduced grain sizes are logical extensions of the current technology until write field limitations are reached. Future advancements will rely on deviations from traditional scaling. Squarer bits may reduce destabilizing stray fields inside the bit transitions. Perpendicular recording may shift the onset of thermal effects to higher bit densities. Enhanced signal processing may allow signal retrieval with fewer grains per bit. Finally, single grain per bit recording may be envisioned in patterned media, with lithographically defined bits  相似文献   

6.
Recent advance of magnetic recording technology has resulted in tremendous increase in area densities. Several new components were developed: Thin film media, and thin film head in longitudinal recording; Single-layer media, double-layer media, and probe head in perpendicular recording. A variety of head and media combinations become possible, and each has a different degree of head-media coupling. The soft magnetic underlayer in double-layer perpendicular media has such a strong coupling with the head that the head and media must be treated as a single entity in the analysis. The evaluation of only a head or a medium without knowing its counterpart could be quite misleading. Optimization of head-media coupling to select the most suitable combination becomes a key factor in designing a high density recording system. We will review the recording and reproducing processes from both the theoretical and experimental aspects for all the head-media structures which have some practical interest.  相似文献   

7.
The perpendicular recording process is essentially demagnetization-free at high bit densities, and the head-to-medium spacing losses become perhaps the most constraining factor in realizing the ultimate capabilities of this technology. In this study we investigated the recording losses resulting from head-to-medium spacing for a double layer madium using a single-pole head and a narrow gap ring head. The spacing was introduced by sputtering Ti overlayers onto the CoCr film in the range of 0.02 microns to 0.18 microns. The recording experiments were performed using a tape deck and a closed tape loop running at low speed. For a spacing d and a wavelength λ, the spacing loss when writing and reading with the single pole head was found to be -99d/λ (dB) for any bit density up to 4Kbpmm (kilo-bits per mm). The spacing losses for the ring head, however, depend on bit density, and are much larger at lower bit densities. In an attempt to separate the writing from the reading spacing losses, we recorded with the single pole head and read back with the ring head. The results of this experiment show that the large spacing losses observed with a ring head at the lower bit densities are primarily incurred during the writing process.  相似文献   

8.
A new magnetic recording system is evaluated that includes the single-pole head, a new medium design, and the soft underlayer of perpendicular recording. The proposed medium consists of perpendicular grains with anisotropy directions tilted optimally about 45/spl deg/ with respect to the perpendicular direction. Here, focus is on the tilt angle at 45/spl deg/ in the crosstrack direction, including a small but typical dispersion. The write pole consists of a tapered-neck single-pole head with a very small throat height that yields maximized write fields without increased edge track degradation. The advantages of tilted perpendicular recording are discussed using theoretical and numerical micromagnetic analyses. This design achieves a much higher signal-to-noise ratio (SNR) than conventional recording, because it is less sensitive to medium orientation distributions and, for the same thermal decay, can utilize media with much smaller grain sizes. The switching speed is much more rapid due to increased recording torque. Estimated recording limits for tilted perpendicular recording with a medium-jitter SNR of 17 dB are beyond densities of 1 Tb/in/sup 2/ and data rates of 1 Gb/s.  相似文献   

9.
The signal and noise of single-layer Co79Cr21 media are measured with ring heads to estimate the area density that can be achieved. Densities as high as 100 Mb/cm2 (1 μm2/bit) are expected when a signal-to-noise ratio sufficient for an error probability less than 10 -5 is required. As a comparison, densities estimated from data from metal-evaporated tape and CrO2 tape are given. In the frequency response of the single-layer media, an additional minimum was observed for a wavelength slightly larger than the gap length. This is probably caused by the bipolar nature of the perpendicular recording field of a ring head  相似文献   

10.
The trends in perpendicular magnetic recording research are discussed, with emphasis on clarifying the trend of research on recording media, their materials, and head materials. Among numerous proposed perpendicular recording media materials, barium ferrite powder and evaporated Co-Cr films seem to lead in practical applications, since their mass production seems to be very successful. There still exist crucial points in their development. However, improvements are continuously taking place. Other candidate perpendicular recording media for a device which has a ring head are also discussed. It is concluded that, for future high-density magnetic recording, utilizing fully the perpendicular component of media magnetization will furnish the key to success  相似文献   

11.
We apply a Fourier series model to calculate distortion in an inductive read head signal due to side-written magnetization patterns in thin-film magnetic recording media. This model predicts that a magnetization pattern consisting of in-track longitudinal and transverse track edge magnetizations will produce a signal distorted by the flux from the side magnetization. By using parameters obtained from a direct magnetic image of the patterns, this analysis predicts the morphology and magnitude of signal distortion as a function of pattern dimensions. The implication of this distortion for higher bit densities suggested for the future was found to be significant. The proposed method will offer reliable means to quantitatively assess the effect of side writing at such densities  相似文献   

12.
High anisotropy L1(0) ordered FePt thin films are considered to have high potential for use as high areal density recording media, beyond 1 Tera bit/in2. In this paper, we review recent results on the synthesis and magnetic properties of L1(0) FePt nanocomposite films. Several fabrication methods have been developed to produce high-anisotropy FePt films: epitaxial and non-epitaxial growth of (001)-oriented FePt:X (X = Au, Ag, Cu, C, etc.) composite films that might be used for perpendicular media; monodispersed FePt nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; self-assembled FePt particles prepared with chemical synthesis by reduction/decomposition techniques, etc. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. FePt and related films show promise for development as heat-assisted magnetic recording media at extremely high areal densities. The self-assembled FePt arrays show potential for approaching the ultimate goal of single-grain-per-bit patterned media.  相似文献   

13.
In this paper, the remanence properties of Co-Sn, Co-Ti and Co-Ti-Sn substituted Ba-ferrite (BaF) oriented particulate samples are compared with those of some oriented acicular particulate samples. A new parameter, the minor remanence distribution (MRD), is proposed to review the remanence properties of magnetic particles and the capabilities for resisting the recording demagnetization of magnetic recording media. It is shown that the MRD values of the oriented BaF particulate samples were smaller compared to oriented Co-γ-Fe2O3 samples, even though the squareness ratios (SR) of some of the BaF samples were smaller than those of the Co-γ-Fe2O3 samples. It Is the small MRD, SFDr, IRS and large DH r of a medium that can result in a large resistance to the effects of recording demagnetization and therefore in superior characteristics for high density magnetic recording. Since Co-Sn substituted BaF platelet-shaped particles exhibit these characteristics and have a very low temperature coefficient of coercivity, these particles can be expected to be a promising candidate for high density magnetic recording  相似文献   

14.
The continuing scaling of magnetic recording is facing more and more scientific and technological challenges because both the read sensor and recording bit are approaching sub-50 nm regime with the ever increasing areal density in hard disk drives. One of the key and indispensable elements for both high-sensitivity sensors and high-density media is the exchange bias between a ferromagnetic and an antiferromagnetic layer or the exchange coupling between two ferromagnets via a non-magnetic spacer. In the nanometer regime, the exchange coupling between ferromagnet and antiferromagnet or two ferromagnets through a conductive spacer is governed by the intergrain exchange interaction which has its origin in electron spins. Interlayer exchange coupling in multilayer or trilayer essentially originates from the quantum confinement effect. In this paper, we first review the physical origin and various theoretical models of the two types of exchange couplings, followed by a review of the applications of the exchange bias and interlayer exchange coupling in data storage with emphasis on the advanced read sensor and advanced media including perpendicular media and patterned media.  相似文献   

15.
Three types of perpendicular recording media were compared using simulations. Exchange coupled composite (ECC) type media could support minimum track pitches up to 18 nm less than a single layer medium, allowing significantly higher areal recording densities. The recording performance of all media was highly susceptible to grain-to-grain variations of uniaxial anisotropy Ku and, in the case of ECC media, to variations in the interlayer coupling strength. Areal densities of around 500 Gb/in2 should be achievable using current technologies, higher densities require improved manufacturing tolerances  相似文献   

16.
One of the most severe limitations on high-density digital recording is imposed by peak shift, which is defined as the outward displacement of the readback signal peaks corresponding to a recorded bit pattern of two successive ones followed and preceded by a number of zeros. Results of an experimental study of peak shift in thin metallic media are represented along with a correlation of the measured percent peak shift with the magnetic properties and the thickness of the media. It was found that the percent peak shift at a specified bit density varies proportionally with the thickness of the coercivity ratio for coercivities larger than 250 Oe. For lower coercivities, the remanent magnetization of the recording surface becomes increasingly significant in adversely affecting the peak shift, with a corresponding decrease in the importance of thickness. By superposing isolated pulses it was possible to predict the percent peak shift up to extremely large bit densities.  相似文献   

17.
Barium ferrite particulate media have generated a lot of interest for advanced magnetic recording applications because they offer the potential to combine high recording densities with relatively low manufacturing cost. They consist of small (sub-tenth micron) plateletshaped particles with competing orthogonal anisotropies (crystalline and shape) of comparable magnitude. These anisotropies, along with the quasi-perpendicular characteristics of the barium ferrite coatings impart to them many subtle and surprising properties, requiring a careful and judicious choice of parameters for each application. The choices include the aspect ratio of the particles, their coercivity, the particle-to-binder loading, and the degree and direction of magnetic orientation. The problem areas include dispersion and orientation of the particles, overwrite characteristics of the coatings, thermal coefficients of the magnetic parameters and maintaining media coercivities at moderate levels. I this paper, we discuss the effect of the particle and coating parameters on the ensuing magnetic and recording properties of the media, and the types of choices that should be made to minimize the impact of some of the potential problems mentioned above.  相似文献   

18.
Results of quasi-contact recording on rigid perpendicular disks are presented in this paper. Footprints of Various recording heads on different recording media, obtained at quasi-static contact conditions using a high resolution magnetoresistive transducer, provide useful information such as sharpness of the magnetization transition and the effect of the demagnetizing field. Very high density magnetization transitions, up to 12500 fc/mm, on single-layer perpendicular rigid disks were recorded and read back by thin film ring heads at a velocity of 5-8 m/s under quasi-contact conditions. At high linear densities the amplitudes on the experimental density response curve are higher than those obtained by the linear superposition of experimental isolated pulses.  相似文献   

19.
This paper presents the results of an investigation of a high density magnetic recording technique utilizing a thin film recording head and a transverse mode of recording on thin media. The significant results of this investigation are as follows. 1) Densities as high as 18 500 transitions per inch were experimentally written in a 300-Å thick FeCr medium having an Hcof 70 oersteds. 2) These densities were written with a thin film, vapor-deposited, recording head having a MATED-FILM® structure with a 0.4-mil etched gap. 3) Track widths of 1-mil on 2-mil centers were experimentally achieved. 4) Optical readout of a 0.2-mil wide transition (width of beam) region corresponding to 5000 transitions per inch was achieved using a laser beam and a linear motion transport system under ideal experimental conditions. 5) The magnetic field from the Néel wall separating recording domains was detected using a MATED-FILM Etched Gap head making this a possible readout method. Maximum achieved linear bit densities as a function of recording media coercivities are given.  相似文献   

20.
It is well known that Co-Cr films show a high perpendicular magnetic anisotropy, coercivity of 1000 oe or above and other properties suitable for perpendicular magnetic recording media. In this report, Co-Cr films, deposited by the bombardment of ions extracted from plasma using a new type of cathode sputtering apparatus with opposing targets, which will be called opposing targets sputtering hereafter, were investigated on morphology, crystal structure and magnetic properties. It was found that in the Co-Cr films of suitable magnetic properties for recording media, the morphology changes and the degree of C-axis orientation of Co-Cr hcp crystal, Δθ50is a constant value as low as about 3° with the increase of ion bombardment energy during deposition. Both morphology and the dependency of Δθ50on thickness of the Co-Cr films deposited by the opposing targets sputtering considerably differ from those by RF sputtering. There was no columnar structure observed in the cross section of the Co-Cr films suitable for perpendicular magnetic recording media prepared by the opposing targets sputtering, whereas columnar structure is reported to be observed clearly in the case of both RF sputtering and vacuum vapor deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号