首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Sahal  B. Marí  M. Mollar 《Thin solid films》2009,517(7):2202-3360
Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low-cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different composition solutions at various substrate temperatures. Structural, chemical composition and optical properties of CIS films were analysed by X-ray diffraction, energy dispersive X-ray spectroscopy and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the <112> direction and no remains of oxides were found after spraying in suitable conditions. X-ray microanalysis shows that a chemical composition near to stochiometry can be obtained. An optical gap of about 1.51 eV was found for sprayed CIS thin films.  相似文献   

2.
Copper indium disulphide (CuInS2) is an absorber material for solar cell and photovoltaic applications. By suitably doping CuInS2 thin films with dopants such as Zn, Cd, Na, Bi, Sn, N, P and As its structural, optical, photoluminescence properties and electrical conductivities could be controlled and modified. In this work, Sb (0.01 mole (M)) doped CuInS2 thin films are grown in the temperature range 300-400 °C on heated glass substrates. It is observed that the film growth temperature, the ion ratio (Cu/In = 1.25) and Sb-doping affects the structural, optical and photoluminescence properties of sprayed CuInS2 films.The XRD patterns confirm that the Sb-doping suppresses the growth of CuInS2 polycrystalline thin films along (1 1 2) preferred plane and in other characteristic planes. The EDAX results confirm the presence of Cu, In, S and Sb. About 60% of light transmission occurs in the wavelength range 350-1100 nm. The absorption coefficient (α) is found to be in the order of 105 cm−1. The band gap energy increases as the temperature increases from 300-400 °C (1.35-1.40 eV). SEM photographs depict that large sized crystals of Sb-doped CuInS2 (1 μm) are formed on the surface of the films. Well defined sharp blue and green band emissions are exhibited by Sb-doped CuInS2 thin films. Defects-related photoluminescence emissions are discussed. These Sb-doped CuInS2 thin films are prepared by the cost effective method of spray pyrolysis from the aqueous solutions of CuCl2, InCl3, SC(NH2)2 and SbCl3 on heated glass substrates.  相似文献   

3.
Copper sulfide (CuxS, x = 1.8-2) thin films were deposited at 285 °C by spray pyrolysis from aqueous and alcoholic solutions of copper (II) chloride and thiourea with different Cu:S molar ratio. The XRD analysis showed that deposited films are chemically close to chalcocite (Cu2S) or to mixtures of copper-rich phases (Cu2S, Cu1.8S, Cu1.9375S) in which chalcocite or digenite (Cu1.8S) is predominant. The films containing the single phase Cu2S are denser and more homogenous than the films formed by two or more phases. The current-voltage (I-V) dark curves showed the diode behavior of the films, depending on the film thickness.  相似文献   

4.
Undoped and chromium doped titanium oxide thin films were fabricated by spray pyrolysis by using a solution of titanium tetrachloride and ethyl alcohol. The films have been deposited on heated glass substrates at 373 K. After annealing for 90 min at 723 K, the initially amorphous films became polycrystalline with a predominant anatase structure and average crystallite sizes depending on dopant (Cr) concentration. The repartition of chromium impurities in the matrix of titanium oxide films, analyzed by electron paramagnetic resonance and X-ray photoelectron spectroscopy showed that the entrance of chromium into the anatase structure is mainly achieved by substitution. A decrease in unit cell parameters ratio (c/a) with the increase of chromium content sustains this assertion. The wetting properties of the titanium oxide films were evaluated from contact angle measurements between de-ionized water and films surface during- and post-irradiation with UV light. The correlation between the concentration of the dopant, film structure, surface morphology and wettability characteristics is discussed.  相似文献   

5.
N. Kamoun  B. Rezig 《Thin solid films》2007,515(15):5949-5952
We have investigated synthesis conditions and some properties of sprayed Cu2ZnSnS4 (CZTS) thin films in order to determine the best preparation conditions for the realization of CZTS based photovoltaic solar cells. The thin films are made by means of spraying of aqueous solutions containing copper chloride, zinc chloride, tin chloride and thiourea on heated glass substrates at various temperatures. In order to optimize the synthesis conditions of the CZTS films, two series of experiments are performed. In the first series the sprayed duration was fixed at 30 min and in the second it is fixed at 60 min. In each series, the substrate temperature was changed from 553°K to 633°K. The X-ray diffraction shows, on one hand, that the best crystallinity was obtained for 613°K as substrate temperature and 60 min as sprayed duration. On the other hand, these CZTS films exhibit the kesterite structure with preferential orientation along the [112] direction. Atomical Force Microscopy was used to determine the grain sizes and the roughness of these CZTS thin film. After the annealing treatment, we estimated the optical band-gap energy of the CZTS thin film exhibiting the best crystallinity as 1.5 eV which is quite close to the optimum value for a solar cell.  相似文献   

6.
CuInS2 films were deposited on glass/FTO/TiO2/In2S3 air ambient air at 300 °C by spray pyrolysis, resulting in superstrate-structured solar cells. The crystallinity of the spray-deposited CuInS2 films was generally good. The CuInS2 films with a thickness of below 2 μm showed only one layer and good adhesion. On the other hand, the CuInS2 films with a thickness of more than 3 μm were formed with several layers, and were easily peeled off during deposition. The band gap value of CuInS2 samples was around 1.3 eV. The performance of the best cell obtained was Voc = 0.37 V, Jsc = 11.2 mA/cm2, FF = 0.35, and had an efficiency = 1.7%. For large size solar cells (2 × 2 cm2), the effect of In2S3 film thickness on the cell performance was significant. In order to characterize the spray-deposited CuInS2 films, the results of EPMA, XRD, XPS, and UV-vis absorption spectra have been discussed.  相似文献   

7.
Seung-Yup Lee 《Thin solid films》2008,516(12):3862-3864
CuInS2 thin films were prepared using a sol-gel spin-coating method. Copper acetate monohydrate (Cu(CH3COO)2·H2O) and indium acetate (In(CH3COO)3) were dissolved into 2-propanol and 1-propanol, respectively. The two solutions were mixed into a starting solution. The solution was dropped onto glass substrate, rotated at 1500 rpm, and dried at 300 °C for Cu-In as-grown films. The as-grown films were sulfurized inside a graphite container box. A clear chalcopyrite phase was observed without a secondary phase. Surface roughness of the films sulfurized at 500 °C was 19.1 nm. A Raman spectra measurement confirmed that no Cu-S or In-S compounds were created in the thin films.  相似文献   

8.
In this paper, the effect of S and Al concentrations on the structural, electrical, optical, thermoelectric and photoconductive properties of the films was studied. The [Al]/[Sn] and [S]/[Sn] atomic ratios in the spray solutions were varied from 10 at.% to 40 at.% and 0 to 50 at.%, respectively. X-ray diffraction analysis showed the formation of SnO2 cassiterite phase as a main phase and the numerous sulfur phases including S, SnS, SnS2 and Sn2S3 in SnO2:Al films. Scanning electron microscopy studies showed that in the absence of S, increasing the Al content results in a smaller grain size and with the addition of S, the films appear to contain small cracks and nodules. The minimum resistance of 0.175 (kΩ/□) was obtained for S-doped SnO2:Al (40 at.%) film with 20 at.% S-doping. From the Hall effect measurements, the majority carrier concentration was obtained in order of 1017-1018 cm− 3. The thermoelectric measurements showed that majority carriers change from electrons to holes for S-doping in SnO2:Al (40 at.%) thin films. The maximum Seebeck coefficient of + 774 μV/K (at T = 370 K) was obtained for S-doped SnO2:Al (10 at.%) film with 50 at.% S-doping. The band gap values were obtained in the range of 3.8-4.2 eV. The S-doped SnO2:Al (40 at.%) films have shown considerably photoconductivity more than S-doped SnO2:Al (10 at.%) with increasing S-doping. The best photoconductive property was obtained for co-doped SnO2 thin film with 40 at.% Al and 5 at.% S concentration in solution.  相似文献   

9.
The structural, electrical and optical properties of Na-doped CuInS2 thin films grown by spray pyrolysis were studied. These films crystallized in the sphalerite structure of CuInS2, and showed to contain traces of indium sulfide and CuIn5S8 as impurity phases. All films were In-rich and showed p-type conductivity. The film conductivity was strongly affected by Na-doping, which decreased from 10−2 to 10−5 S/cm by increasing the [Na]/[Cu] ratio from 0.005 to 0.03 in the spray solution. The band gap energy was observed to increase, from 1.4 to 1.45 eV, with increasing the [Na]/[Cu] ratio. Our results suggested that Na could be an effective acceptor impurity in sprayed CuInS2.  相似文献   

10.
Thin films of CuIn1 − xAlxSe2 were grown using a cathodic electrodeposition technique. The CuIn1 − xAlxSe2 films were electrodeposited on SnO2 coated glass from aqueous baths containing different Al contents using deposition potentials ranging from − 650 mV to − 850 mV versus a saturated calomel electrode. The electrodeposited films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays, atomic force microscopy, and UV-VIS-NIR spectroscopy. The results show that single phase CuIn1 − xAlxSe2 films with Al content x around 0.27-0.33 having good stoichiometry can be produced in the above potential range. XRD and SEM studies show that films deposited at − 650 mV and − 750 mV have good crystallinity while those grown at − 850 mV have comparatively poorer crystallinity. SEM studies show that the particle size of the films grown at − 650 and − 750 mV is in the micron range but is around 100 nm when grown at − 850 mV. Optical studies show that the optical band gap shifts with Al content from 1.21 eV for x = 0.27 to about 1.42 eV for x = 0.33. The as-grown as well as vacuum annealed films were n-type in conductivity with resistivity in the range 3-5 × 10−3 Ω cm.  相似文献   

11.
The electrochromic (EC) properties of tungsten oxide (WO3), such as coloration efficiency, cyclic durability and reversibility strongly depend on the structural and morphological properties, which are influenced by the deposition method and parameters.This paper presents the steps for optimizing the deposition parameters (substrate temperature, air flow pressure and precursor solution molarity) for improving the optical and electrical properties of WO3 thin films for EC applications. WO3 thin films were deposited by spray pyrolysis using tungsten hexachloride (WCl6) dissolved in ethanol as precursor solution. The EC properties of optimized films were tested in two different electrolytes (H2SO4 1 M and acetic acid/sodium acetate buffer with pH = 4) and changes in structure, composition and morphology of the films after coloration/bleaching cycles were discussed.The deposition temperature, carrier gas pressure and solution molarity were optimized at 250 °C, 120 kPa and 0.14 M respectively. Under these condition a dense, uniform film, with homogenous distribution of particles, good adhesion to the substrate, low roughness (9.02 nm), high transparency (> 70% in the 500-1100 nm range) and conductivity was obtained. Transmission modulation is higher for the sample cycled in H2SO4 1 M (64% at 630 nm) compared to that cycled in the buffer (21% at 630 nm), whereas opposite results were obtained for coloration efficiencies 28 cm2 C− 1 (at 630 nm) and 35 cm2 C− 1 (at 630 nm), respectively. Changes in surface chemistry and morphology of the optimized sample were observed after cycling in H2SO4.  相似文献   

12.
FeS2-thin films with good crystallinity were synthesized by a simple method which consists of sulphuration, under vacuum, of amorphous iron oxide thin films pre-deposited by spray pyrolysis of FeCl3·6H2O (0.03 M)-based aqueous solution onto glass substrates heated at 350 °C. At optimum sulphuration temperature (450 °C) and duration (6 h), black green layers having granular structure and high absorption coefficient (5.104 cm−1) were obtained. The study of the electrical properties of the as-prepared films vs. the temperature variations showed three temperature domain dependence of the conductivity behaviour. The first one corresponds to the high temperature range (330 K–550 K) for which an Arrhenius plot type was obtained. The activation energy value was estimated at about 61.47 meV. The second domain corresponding to the intermediate temperature range (80 K–330 K) showed a variable activation energy between the grain boundaries. The barrier height, , was estimated to 27±0.5 meV, and the standard deviation, , was evaluated at about 14±0.5 meV. We found that at lower temperatures (20 K–80 K), the conductivity is governed by two conduction types. The density of localised states, was about 2.45×1020 eV−1 cm−3.  相似文献   

13.
Optical properties of In2O3 films prepared by spray pyrolysis   总被引:1,自引:0,他引:1  
In2O3 thin films have been deposited on glass substrates by spray pyrolysis. InCl4 was used as the solute to prepare the starting solution with a concentration of 0.1 M. The films were grown at different substrate temperatures ranging from 300 to 400 °C. The as-grown layers were optically characterized in order to evaluate the absorption coefficient, optical band gap, refractive index, extinction coefficient and other optical parameters. The influence of substrate temperature on these parameters was reported and discussed.  相似文献   

14.
Thin films of CaWO4 and SrWO4 were prepared on glass substrates by spray pyrolysis. The effects of preparation conditions and monovalent, bivalent and trivalent cation doping on cathodoluminescence (CL) properties of the films were studied. Polycrystalline CaWO4 and SrWO4 films formed a scheelite structure after being annealed above 300°C. They exhibited analogous cathodoluminescence consisting of a blue emission band at 447 nm and a blue-green emission band at 487 nm. The blue and blue-green emission intensities increased with substrate and annealing temperature. Annealing atmosphere and doping with Ag+, Pb2+ and La3+ did not influence the characteristics of the blue and blue-green emissions, whereas Eu3+ did. The results indicated both the blue and blue-green emissions originated from the WO42− molecular complex. The luminance and efficiency for CaWO4 film were 150 cd/m2 and 0.7 lm/W at 5 kV and 57 μA/cm2.  相似文献   

15.
This paper reports the production of high quality copper indium diselenide thin films using pulsed DC magnetron sputtering from a powder target. As-grown thin films consisted of pin-hole free, densely packed grains. X-ray diffraction showed that films were highly orientated in the (112) and/or (204)/(220) direction with no secondary phases present. The most surprising and exciting outcome of this study was that the as-grown films were of near stoichiometric composition, almost independent of the composition of the starting material. No additional steps or substrate heating were necessary to incorporate selenium and create single phase CuInSe2. Electrical properties obtained by hot point probe and four point probe gave values of low resistivity and showed that the films were all p-type. The physical and structural properties of these films were analyzed using X-ray diffraction, scanning electron microscopy and atomic force microscopy. Resistivity measurements were carried out using the four point probe and hot probe methods. The single step deposition process can cut down the cost of the complex multi step processes involved in the traditional vacuum based deposition techniques.  相似文献   

16.
Rui Yu  Tong Ren 《Thin solid films》2010,518(19):5515-5519
In this paper, we describe the development of a bath comprising triethanolamine and sodium dodecyl sulfate for electrodeposition of CuInSe2 thin films, by which long-term bath stability was found to be improved and near-stoichiometric CuInSe2 films with smooth surface morphology were obtained. Scanning electron microscopy studies reveal a dramatic improvement of the crystalline quality of CuInSe2 films with the addition of sodium dodecyl sulfate. X-ray diffraction results and Raman spectra confirm that the improvement of the film growth is attributed to the synergistic effect of triethanolamine and sodium dodecyl sulfate. The addition of anionic surfactant sodium dodecyl sulfate can significantly improve the adherence between the CuInSe2 layer and the substrate.  相似文献   

17.
Microstructural characterization of pulsed laser deposited Al2O3/ZrO2 multilayers on Si (1 0 0) substrates at an optimized oxygen partial pressure of 3 × 10−2 mbar and at room temperature (298 K) has been carried out. A nanolaminate structure consisting of alternate layers of ZrO2 and Al2O3 with 40 bi-layers was fabricated at different zirconia layer thicknesses (20, 15 and 10 nm). The objective of the work is to study the effect of ZrO2 layer thickness on the stabilization of tetragonal ZrO2 phase for a constant Al2O3 layer thickness of 5 nm. The Al2O3/ZrO2 multilayer films were characterized using high temperature X-ray diffraction (HTXRD) in the temperature range 298–1473 K. The studies showed that the thickness of the zirconia layer has a profound influence on the crystallization temperature for the formation of tetragonal zirconia phase. The tetragonal phase content increased with the decrease of ZrO2 layer thickness. The cross-sectional transmission electron microscope (XTEM) investigations were carried out on a multilayer thin films deposited at room temperature. The XTEM studies showed the formation of uniform thickness layers with higher fraction of monoclinic and small fraction of tetragonal phases of zirconia and amorphous alumina.  相似文献   

18.
AgInS2 thin films were prepared by the spray pyrolysis technique using a water/ethanol solution containing silver acetate, indium chloride and thiourea. We reported our results on the characterization of tetragonal AgInS2 (chalcopyrite type) films, which were grown from indium deficient spraying solution. The films displayed a n-type conductivity with room temperature resistivities in the range between 103 and 104 Ω cm. The absorption spectra of sprayed films revealed two direct band-gaps with characteristic energies around 1.87 and 2.01 eV, which are in good agreement with the reported energy values for interband transitions from the split p-like valence band to the s-like conduction band in tetragonal AgInS2 single crystals.  相似文献   

19.
CuGaSe2 thin films have been prepared by one-step electrodeposition and rapid thermal annealing process. According to composition and morphology analysis, deposition potential of − 0.6 V vs. SCE is considered to be optimum for electrodeposition. From the X-ray diffraction and Raman studies, the as-deposited film exhibits poor crystallinity without the evidence of CuGaSe2 or other Ga-containing phases, while the rapid thermal annealing-treated film shows chalcopyrite structure CuGaSe2 phase containing MoSe2 phase between the Mo substrate and the absorber and minor second phase Cu2 − xSe. The obtained CuGaSe2 thin film has a band gap of about 1.68 eV and p-type conductivity.  相似文献   

20.
The spray pyrolysis technique was employed to prepare lanthanum selenide (La2Se3) thin films on ordinary glass and fluorine doped tin oxide (FTO) coated glass substrates under optimized conditions. The preparative parameters are optimized to get good quality of La2Se3 thin films. X-ray diffraction (XRD) study reveals that only cubic La2Se3 is formed with a grain size of about 42 nm. The direct optical band gap is estimated to be 2.6 eV. The dispersions of dielectric constant and dielectric loss are studied with the variation of frequency. The room temperature electrical resistivity of the films is found to be of the order of 105 Ω cm. The film is found to be a p-type semiconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号