首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Energy》2004,29(3):415-426
A new carbon dioxide separation system based on CO2 absorption in aqueous solutions of alkaline salts (sodium and potassium carbonate) was studied with reference to semi-closed gas turbine/combined cycle (SCGT/CC), and compared to results obtained with existing technologies. Use of calcium hydroxide for the regeneration of the exhaust solution was studied in order to obtain a tail-end product, calcium carbonate in the form of precipitated calcium carbonate (PCC) with a wide spread and continuously growing market. The alkali CO2 absorption process was compared with a conventional amine absorption process (DEA+MDEA), referring to the same SCGT/CC based on the same CO2 removal efficiency. The comparison allows foregrounding of the possible goals of the CO2 alkali absorption process with respect to previous amine cycle analyses. The modeling approach focuses on a thermodynamical and economical first comparison of the proposed cycle to previous studies carried out on CO2 absorption (Energy Convers. Manage. 40 (1999) 1917; Absorption of CO2 with amines in a semi closed GT cycle: plant performance and operating costs, ASME Paper 98-GT-395, American Society of Mechanical Engineers ASME Publishing, New York, 1998; Greenhouse Gas Control Technologies Conference, Interlaken, Switzerland, Pergamon, Oxford, 1999).  相似文献   

2.
The analysis of the SCGT (Semi-Closed Gas Turbine cycle) is extended to the treatment of acid condensation (sulphur compounds) at the exit of the separator (SEP), with reference to different possible configurations already studied from the thermodynamic and environmental points of view. This detailed analysis was considered necessary because the natural gas fuel can contain a small amount of H2S which, reacting with air, can form SO2 and finally sulphuric acid. This can represent a problem (mainly from the economic point of view) because of the possibility of sulphuric acid condensation at the exit of the separator, where the temperature can reach values below the acid dew point of the mixture.

The data obtained from ENI publications were used for the natural gas composition, and a 0.005% H2S molar fraction was additionally hypothesized. With these assumptions, about 0.1% SO2 can be found in the exhaust gases at the separator inlet.

Aspen Plus was used in order to evaluate the chemical effects of the acidity of the condensate produced in the separator. An evaluation about costs of the devices to be used for condensation of the recirculated flue gas humidity has been performed, considering use of the special materials necessary for reducing the aggressive effects of acid water condensation.

A final evaluation of the overall conversion system plant is also produced, showing the economic balance in terms of resulting cost of the unit of electrical energy produced and of inlet power in terms of fuel.

The results are also evaluated in terms of CO2 emissions, considering the ratio between the global cost of the power generation plant and the global carbon dioxide emissions, compared to other types of energy conversion open cycle solutions.  相似文献   


3.
Thermal efficiency of Combined Cycle Power Plants (CCPPs) depends strongly on the Heat Recovery Steam Generation (HRSG) design which links the gas cycle with the steam cycle. Therefore, the HRSG must be carefully designed in order to maximize the heat exchanged and to improve the overall performance of the plant.In this paper, a mixed integer non-linear programming (MINLP) model to simultaneously optimize the equipment arrangement, geometric design and operating conditions of CCPPs is proposed. General Algebraic Modelling System (GAMS) is used to implement and to solve the mathematical model. The HRSG model involves discrete decisions connected with the geometric design and the selection of tube diameters as well as the length and width of each solid fin. Continuous variables are used to model the operating conditions of the HRSG and steam turbines (ST). The solution strategy for the resulting model comprises two phases: the first one focuses the process optimization but considering only global energy and mass balances and this phase provides initial-bounds values for the second phase where the complete and rigorous model involving discrete decisions is solved. Different case studies with increasing complexity have been successfully solved. Model validation and results obtained from the MINLP model by considering different objective functions are discussed.  相似文献   

4.
A theoretical analysis of a two‐stage transcritical CO2 cooling cycle is presented. The effect of a two‐stage cycle with intercooling process on the system coefficient of cooling performance is presented for various gas cooler pressures. However, the performance comparison between one‐stage and two‐stage cycles is presented for same operating conditions. Gas cooler pressure, compressor isentropic efficiency, gas cooler efficiency, intercooling quantity and refrigerant outlet temperature from the gas cooler are used as variable parameters in the analysis. It is concluded that the performance of the two‐stage transcritical CO2 cycle is approximately 30% higher than that of the one‐stage transcritical CO2 cycle. Hence, the two‐stage compression and intercooling processes can be assumed as valuable applications to improve the transcritical CO2 cycle performance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Many F class gas turbine combined cycle(GTCC)power plants are built in China at present because of less emis-sion and high efficiency.It is of great interest to investigate the efficiency improvement of GTCC plant.A com-bined cycle with three-pressure reheat heat recovery steam generator(HRSG)is selected for study in this paper.In order to maximize the GTCC efficiency,the optimization of the HRSG operating parameters is performed.Theoperating parameters are determined by means of a thermodynamic analysis,i.e.the minimization of exergylosses.The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed.Theresult shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when itis over 590℃.Partial gas to gas recuperation in the topping cycle is studied.Joining HRSG optimization with theuse of gas to gas heat recuperation,the combined plant efficiency can rise up to 59.05% at base load.In addition,the part load performance of the GTCC power plant gets much better.The efficiency is increased by 2.11% at75% load and by 4.17% at 50% load.  相似文献   

6.
Increasing the inlet temperature of gas turbine (TIT) and optimization are important methods for improving the efficiency and power of the combined cycle. In this paper, the triple‐pressure steam‐reheat gas‐reheat recuperated combined cycle (the Regular Gas‐Reheat cycle) was optimized relative to its operating parameters, including the temperature differences for pinch points (δTPP). The optimized triple‐pressure steam‐reheat gas‐reheat recuperated combined cycle (the Optimized cycle) had much lower δTPP than that for the Regular Gas‐Reheat cycle so that the area of heat transfer of the heat recovery steam generator (HRSG) of the Optimized cycle had to be increased to keep the same rate of heat transfer. For the same mass flow rate of air, the Optimized cycle generates more power and consumes more fuel than the Regular Gas‐Reheat cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the HRSG and the additional fuel. Constraints were set on many operating parameters such as the minimum temperature difference for pinch points (δTPPm), the steam turbines inlet temperatures and pressures, and the dryness fraction at steam turbine outlet. The net additional revenue was optimized at 11 different maximum values of TIT using two different methods: the direct search and variable metric. The performance of the Optimized cycle was compared with that for the Regular Gas‐Reheat cycle and the triple‐pressure steam‐reheat gas‐reheat recuperated reduced‐irreversibility combined cycle (the Reduced‐Irreversibility cycle). The results indicate that the Optimized cycle is 0.17–0.35 percentage point higher in efficiency and 5.3–6.8% higher in specific work than the Reduced‐Irreversibility cycle, which is 2.84–2.91 percentage points higher in efficiency and 4.7% higher in specific work than the Regular Gas‐Reheat cycle when all cycles are compared at the same values of TIT and δTPPm. Optimizing the net additional revenue could result in an annual saving of 33.7 million US dollars for a 481 MW power plant. The Optimized cycle was 3.62 percentage points higher in efficiency than the most efficient commercially available H‐system combined cycle when compared at the same value of TIT. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Cycle simulation and analysis for two kinds of SOFC/GT hybrid systems were conducted with the help of the simulation tool: Aspen Custom Modeler. Two cycle schemes of recuperative heat exchanger (RHE) and exhaust gas recirculated (EGR) were described according to the air reheating method. The system performance with operating pressure, turbine inlet temperature and fuel cell load were studied based on the simulation results. Then the effects of oxygen utilization, fuel utilization, operating temperature and efficiencies of the gas turbine components on the system performance of the RHE cycle and the EGR cycle were discussed in detail. Simulation results indicated that the system optimum efficiency for the EGR air reheating cycle scheme was higher than that of the RHE cycle system. A higher pressure ratio would be available for the EGR cycle system in comparison with the RHE cycle. It was found that increasing fuel utilization or oxygen utilization would decrease fuel cell efficiency but improve the system efficiency for both of the RHE and EGR cycles. The efficiency of the RHE cycle hybrid system decreased as the fuel cell air inlet temperature increased. However, the system efficiency of EGR cycle increased with fuel cell air inlet temperature. The effect of turbine efficiency on the system efficiency was more obvious than the effect of the compressor and recuperator efficiencies among the gas turbine components. It was also indicated that improving the gas turbine component efficiencies for the RHE cycle increased system efficiency higher than that for the EGR cycle.  相似文献   

8.
4MWe生物质气化联合循环发电系统的寿命周期评价   总被引:9,自引:1,他引:9  
对我国正在研发的4MWe生物质气化气体机—汽轮机联合循环发电系统进行了寿命周期评价,评价中考虑了由于稻草作为燃料使用,没有还田导致的土壤肥力流失因素。系统边界包括了4个子系统,即化肥生产,生物质运输,发电转换过程,电厂建设和解体子系统。比较了寿命周期评价结果与煤气化发电系统。  相似文献   

9.
配PG9171E燃机余热锅炉主蒸汽参数的优化计算   总被引:1,自引:0,他引:1  
联合循环系统中余热锅炉主蒸汽参数的确定 ,直接影响到蒸汽循环系统的性能和整个联合循环装置的效率。以某电厂烧重油PG91 71E燃机联合循环蒸汽循环系统为对象 ,建立了余热锅炉主蒸汽参数优化的热工模型。同时结合余热锅炉的设计 ,分别对主蒸汽压力、温度进行了优化计算。计算结果与国外公司的推荐数据完全一致 ,表明建立的模型正确 ,选定的优化约束条件合理 ,可供联合循环工程设计参考。  相似文献   

10.
This work presents a novel plant configuration for power production from solid fuels with integrated CO2 capture. Specifically, the Gas Switching Combustion (GSC) system is integrated with a Humid Air Turbine (HAT) power cycle and a slurry fed entrained flow (GE-Texaco) gasifier or a dry fed (Shell) gasifier with a partial water quench. The primary novelty of the proposed GSC-HAT plant is that the reduction and oxidation reactor stages of the GSC operation can be decoupled allowing for flexible operation, with the oxygen carrier serving as a chemical and thermal energy storage medium. This can allow the air separation unit, gasifier, gas clean-up, CO2 compressors and downstream CO2 transport and storage network to be downsized for operation under steady state conditions, while the reactors and the power cycle operate flexibly to follow load. Such cost-effective flexibility will be highly valued in future energy systems with high shares of variable renewable energy. The GSC-HAT plant achieves 42.5% electrical efficiency with 95.0% CO2 capture rate with the Shell gasifier, and 41.6% efficiency and 99.2% CO2 capture with the GE gasifier. An exergy analysis performed for the GE gasifier case revealed that this plant reached 38.9% exergy efficiency, only 1.6%-points below an inflexible GSC-IGCC benchmark configuration, while reaching around 5%-points higher CO2 capture rate. Near-zero SOx and NOx emissions are achieved through pre-combustion gas clean-up and flameless fuel combustion. Overall, this flexible and efficient near-zero emission power plant appears to be a promising alternative in a future carbon constrained world with increasing shares of variable renewables and more stringent pollutant (NOx, SOx) regulations.  相似文献   

11.
This paper presents exergy analysis of a conceptualized combined cogeneration plant that employs pressurized oxygen blown coal gasifier and high‐temperature, high‐pressure solid oxide fuel cell (SOFC) in the topping cycle and a bottoming steam cogeneration cycle. Useful heat is supplied by the pass‐out steam from the steam turbine and also by the steam raised separately in an evaporator placed in the heat recovery steam generator (HRSG). Exergy analysis shows that major part of plant exergy destruction takes place in gasifier and SOFC while considerable losses are also attributed to gas cooler, combustion chamber and HRSG. Exergy losses are found to decrease with increasing pressure ratio across the gas turbine for all of these components except the gas cooler. The fuel cell operating temperature influences the performance of the equipment placed downstream of SOFC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A.M. Bassily   《Applied Energy》2008,85(12):1141-1162
The main methods for improving the efficiency or power of the combined cycle are: increasing the inlet temperature of the gas turbine (TIT), inlet air-cooling, applying gas reheat, steam or water injection into the gas turbine (GT), and reducing the irreversibility of the heat recovery steam generator (HRSG). In this paper, gas reheat with recuperation was applied to the regular triple-pressure steam-reheat combined cycle (the Regular cycle) by replacing the GT unit with a recuperated gas-reheat GT unit (requires two gas turbines, gas recuperator, and two combustion chambers). The Regular cycle with gas-reheat and gas-recuperation (the Regular Gas Reheat cycle) was modeled including detailed modeling of the combustion and GT cooling processes and a feasible technique to reduce the irreversibility of its HRSG was introduced. The Regular Gas Reheat cycle and the Regular Gas Reheat cycle with reduced-irreversibility HRSG (the Reduced Irreversibility cycle) were compared with the Regular cycle, which is the typical design for a commercial combined cycle. The effects of varying the TIT on the performances of all cycles were presented and discussed. The results indicate that the Reduced Irreversibility cycle is 1.9–2.15 percentage points higher in efficiency and 3.5% higher in the total specific work than the Regular Gas Reheat cycle, which is 3.3–3.6 percentage points higher in efficiency and 22–26% higher in the total specific work than the Regular cycle. The Regular Gas Reheat and Reduced Irreversibility cycles are 1.18 and 3.16 percentage points; respectively, higher in efficiency than the most efficient commercially-available combined cycle at the same value of TIT. Economic analysis was performed and showed that applying gas reheat with recuperation to the Regular cycle could result in an annual saving of 10.2 to 11.2 million US dollars for a 339 MW to 348 MW generating unit using the Regular cycle and that reducing the irreversibility of the HRSG of the Regular Gas Reheat cycle could result in an additional annual saving of 11.8 million US dollars for a 439 MW generating unit using the Regular Gas Reheat cycle.  相似文献   

13.
The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field.  相似文献   

14.
A parametric study is conducted on a hybrid SOFC-GT cycle as part of a national program aiming to improve the efficiency of the actual gas turbine power plants and to better undertake the future investigations. The proposed power plant is mainly constituted by a Gas Turbine cycle, a SOFC system, and an ammonia water absorption refrigerating system. An external pre-reformer is installed before the SOFC. Heat recovery systems are adopted to valorize the waste heat at the SOFC and GT exhausts. The gas from the SOFC exhaust is also used as additional supply for the combustion chamber. An extraction is performed on the gas Turbine in order to feed the SOFC cycle by thermal heat flux at medium pressure.The equations governing the electrochemical processes, the energy and the exergy balances of the power plant components are established. Numerical simulation using EES software is performed. The influences of key operating parameters, such as humidity, pre-reforming fraction, extraction fraction from the Gas Turbine and fuel utilization on the performances of the SOFC-GT hybrid system are analyzed. Obtained results show that the integration of the SOFC enhances significantly the hybrid overall cycle efficiency. The increase of the ambient temperature and humidity reduces the system efficiencies. The utilization factor has a negative effect on the SOFC temperature and voltage. That leads to a decrease in the power plant performances. While the pre-reforming fraction, has a positive effect on the indicated parameters.  相似文献   

15.
Mortaza Yari  S.M.S. Mahmoudi 《Energy》2011,36(12):6839-6850
In this paper, two new CO2 cascade refrigeration cycles are proposed and analyzed. In both these cycles the top cycle is an ejector-expansion transcritical cycle and the bottom cycle is a sub-critical CO2 cycle. In one of these proposed cycles the waste heat from the gas cooler is utilized to drive a supercritical CO2 power cycle making the plant a combination of three cycles. Using the first and second laws of thermodynamics, theoretical analyses on the performance characteristics of the cycles are carried out. Also a parametric study is conducted to optimize the performance of each cycle under various operating conditions. The proposed cycles exhibit a reasonable value of COP (coefficient of performance) with a much less value of compressor discharge temperature, compared to the conventional cycles.  相似文献   

16.
The Gas Turbine Modular Helium Reactor (GT-MHR) uses two compression stages to compress the helium and a pre-cooler and an intercooler to reduce the compressors inlet temperature, that dissipate around 308.36 MWth at the design operational conditions. This dissipated thermal energy can be used as an energy source to produce hydrogen. An energy analysis is conducted for a proposed system that includes GT-MHR combined with Organic Rankine Cycle (GT-MHR/ORC) and a Proton Exchange Membrane (PEM) electrolyzer (GT-MHR/ORC-PEM) for hydrogen production. The optimum operating parameters values of the new cycle are obtained using the Engineering Equation Solver (EES) software. Thermal efficiency has been improved from 48.6% for the simple GT-MHR cycle to 49.8% for the new combined (GT-MHR/ORC-PEM) cycle including hydrogen production at a rate of 0.0644 kg/s at the same operating conditions. However, the thermal efficiency for the combined GT-MHR/ORC was higher and reaches 50.68%. Moreover, a parametric study is carried out over a wide range of some operating conditions such as turbine inlet temperature, Compressor pressure ratio and compressor inlet temperature to investigate their effect on the new cycle performance. Results revealed that increasing the low-pressure compressor inlet temperature increases the amount of hydrogen produced while decreasing thermal efficiencies for the three cycles. Furthermore, increasing compressor pressure ratio reduces the mass flow rate of hydrogen produced util it reaches a minimum value then it starts to increase slightly, on the contrary, an opposite relationship is observed between thermal efficiencies and compressor pressure ratio. Moreover, at low compressor pressure ratio, the rate of hydrogen produced increases with increasing turbine inlet temperature; however, it decreases by increasing the turbine inlet temperature at high compressor pressure ratio. Nevertheless, a direct correlation is noticed between thermal efficiencies and turbine inlet temperature.  相似文献   

17.
研究了如何提高余热锅炉型三压再热联合循环系统的效率,应用分析的方法建立了系统效率数学模型,以联合循环系统效率最高作为系统性能的评判标准。在亚临界范围内,对余热锅炉的蒸汽参数进行了优化;针对余热锅炉进气温度对余热锅炉性能的影响进行分析,在此基础上提出燃气轮机排气部分回热利用,并研究了回热利用对联合循环效率的影响。计算结果表明:经余热锅炉优化和排气部分回热利用,在基本负荷下,PG9351FA机组的联合循环热效率可提高1.33%;在75%和50%的负荷下,效率分别提高2.11%和4.17%;而具有再热的GT26机组热效率高达60.73%。  相似文献   

18.
Thermal efficiency of a combined cycle power plant depends strongly on a heat recovery steam generator (HRSG), which is the link between the gas turbine‐based topping cycle and steam turbine‐based bottoming cycle. This work is based upon the design of physical parameters of a HRSG. In this article, the physical parameters of a HRSG have been considered to study their implications on HRSG design by comparing the existing plant design with an optimized plant design. Thermodynamic analysis of HRSG for the two designs gives important outcomes which are useful for power plant designers. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21106  相似文献   

19.
This paper presents a summary of technical-economic studies. It allows evaluating, in the French context, the production cost of electricity derived from coal and gas power plants with the capture of CO2, and the cost per tonne of CO2 avoided. Three systems were studied: an Integrated Gasification Combined Cycle (IGCC), a conventional combustion of Pulverized Coal (PC) and a Natural Gas Combined Cycle (NGCC). Three main methods were envisaged for the capture of CO2: pre-combustion, post-combustion and oxy-combustion.For the IGCC, two gasification types have been studied: a current technology based on gasification of dry coal at 27 bars (Shell or GE/Texaco radiant type) integrated into a classical combined cycle providing 320 MWe, and a future technology (planned for about 2015–2020) based on gasification of a coal–water mixture (slurry) that can be compressed to 64 bars (GE/Texaco slurry type) integrated into an advanced combined cycle (type H with steam cooling of the combustion turbine blades) producing a gross power output of 1200 MWe.  相似文献   

20.
The operation and performances of an innovative small scale polygeneration system (BIO_MGT), which combines biomass and natural gas in a micro gas turbine, has been simulated in the present work by means of a thermodynamic matching analysis. The BIO_MGT unit matches an externally fired cycle with a commercial Micro Gas Turbine (MGT, 100 kWe). A significant share of the total energy input (70%) is supplied by solid biomass: the remaining is provided by natural gas. The system is therefore characterised by a dual combustion system. The configuration of the plant has been conceived so to require only minor modifications to conventional MGTs and biomass furnaces available on the market. This paper describes the design of the proposed bioenergy plant as well as the structure and the application of the in-house developed simulation model AMOS which has been used as computer-aid design tool. The design activity compared various plant schemes available from literature or past research works. The thermodynamic matching analysis of the selected configuration was then carried out, with the aim to verify compressor and turbine working points and to compare these with those typical of the MGT working under standard natural gas conditions. The steady-state matching analysis was based on the performance maps (i.e. characteristic lines) of each component. The design specifications and operating range for main and sub-components were defined, and the BIO_MGT performance maps were computed. Results showed that both the turbine as well as the compressor will work within the acceptable limits, and plant performances have also been calculated at part load conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号