首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly catalytic asymmetric α‐hydroxylation of β‐indanone esters and β‐indanone amides using peroxide as the oxidant was realized with a new C‐2′ substituted Cinchona alkaloid derivatives. The two enantiomers of α‐hydroxy‐β‐indanone esters could be obtained by simply changing the oxidant. This protocol allows a convenient access to the corresponding α‐hydroxy‐β‐indanone esters and α‐hydroxy‐β‐indanone amides with up to 99% yield and 98% ee.

  相似文献   


2.
The highly enantioselective organo‐co‐catalytic aza‐Morita–Baylis–Hillman (MBH)‐type reaction between N‐carbamate‐protected imines and α,β‐unsaturated aldehydes has been developed. The organic co‐catalytic system of proline and 1,4‐diazabicyclo[2.2.2]octane (DABCO) enables the asymmetric synthesis of the corresponding N‐Boc‐ and N‐Cbz‐protected β‐amino‐α‐alkylidene‐aldehydes in good to high yields and up to 99% ee. In the case of aza‐MBH‐type addition of enals to phenylprop‐2‐ene‐1‐imines, the co‐catalytic reaction exhibits excellent 1,2‐selectivity. The organo‐co‐catalytic aza‐MBH‐type reaction can also be performed by the direct highly enantioselective addition of α,β‐unsaturated aldehydes to bench‐stable N‐carbamate‐protected α‐amidosulfones to give the corresponding β‐amino‐α‐alkylidene‐aldehydes with up to 99% ee. The organo‐co‐catalytic aza‐MBH‐type reaction is also an expeditious entry to nearly enantiomerically pure β‐amino‐α‐alkylidene‐amino acids and β‐amino‐α‐alkylidene‐lactams (99% ee). The mechanism and stereochemistry of the chiral amine and DABCO co‐catalyzed aza‐MBH‐type reaction are also discussed.  相似文献   

3.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator‐activated receptor‐α (PPAR‐α). Compounds that feature an α‐amino‐β‐lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti‐inflammatory effects that are mediated through FAE‐dependent activation of PPAR‐α. We synthesized and tested a series of racemic, diastereomerically pure β‐substituted α‐amino‐β‐lactones, as either carbamate or amide derivatives, investigating the structure–activity and structure–stability relationships (SAR and SSR) following changes in β‐substituent size, relative stereochemistry at the α‐ and β‐positions, and α‐amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β‐position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.  相似文献   

4.
The spiro‐2,2′‐bichroman‐based chiral bisoxazoline ligands (SPANbox) were found to be highly efficient in copper(II)‐ and zinc(II)‐catalyzed asymmetric chlorinations of cyclic β‐keto esters with N‐chlorosuccinimide (NCS) as the chlorination reagent, to give the corresponding α‐chloro‐β‐keto esters in excellent yields in 5–30 min with ee values up to 97%. The copper(II) triflate and zinc(II) triflate complexes of a single SPANbox ligand demonstrated complementary results to each other with respect to the enantioselection, affording both antipodes of the chlorinated product enantiomers with good to excellent optical purities.  相似文献   

5.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

6.
The first organocatalytic Mannich reaction of 5H‐oxazol‐4‐ones with various readily prepared aryl‐ and alkylsulfonimides has been developed. Two commercially available pseudoenantiomeric Cinchona alkaloids‐derived tertiary amine/ureas have been demonstrated as the most efficient catalysts to access the opposite enantiomers of the Mannich products with equally excellent enantio‐ and diastereoselectivities. From the Mannich adducts, important α‐methyl‐α‐hydroxy‐β‐amino acid derivatives, such as the α‐methylated C‐13 side chain of taxol and taxotere, can be conveniently prepared.  相似文献   

7.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


8.
The activation of C Cl bond of (Z)‐α‐chloroalkylidene‐β‐lactones and (E)‐α‐chloroalkylidene‐β‐lactams via the Suzuki cross‐coupling reaction is reported in this paper. Alkyl, heteroaromatic, substituted phenyl‐ and alkenylboronic acids can be coupled with a wide variety of α‐chloroalkylidene‐β‐lactones and β‐lactams in excellent yields within a short period of time. The cross‐coupling reaction of optically active substrates leads to the optically active compounds without racemization of the corresponding chiral center.  相似文献   

9.
A new and efficient catalytic asymmetric synthesis of the potent cannabinoid receptor agonist (−)‐CP‐55940 has been developed by using ruthenium‐catalyzed asymmetric hydrogenation of racemic α‐aryl ketones via dynamic kinetic resolution (DKR) as a key step. With RuCl2‐SDPs/diamine [SDPs=7,7′‐bis(diarylphophino)‐1,1′‐spirobiindane] catalysts the asymmetric hydrogenation of racemic α‐arylcyclohexanones via DKR provided the corresponding cis‐β‐arylcyclohexanols in high yields with up to 99.3% ee and >99:1 cis‐selectivities. Both ethylene ketal group at the cyclohexane ring and ortho‐methoxy group at the phenyl ring of the substrates 6 have little effect on the selectivity and reactivity of the hydrogenations. Based on this highly efficient asymmetric ketone hydrogenation, (−)‐CP‐55940 was synthesized in 13 steps (the longest linear steps) in 14.6% overall yield starting from commercially available 3‐methoxybenzaldehyde and 1,4‐cyclohexenedione monoethylene acetal.  相似文献   

10.
Three environment friendly β‐cyclodextrin polymer electrorheological (ER) particles (NS‐β‐CDP, WSS‐β‐CDP, and CLS‐β‐CDP) were synthesized by copolymerization through a mixture of β‐cyclodextrin (β‐CD) and epichlorohydrin in the absence of starch or in the presence of water‐soluble and water‐insoluble starch, respectively. The electrorheological properties of suspensions in silicone oil were then investigated under direct current (dc) electric fields. It was found that the yield stress of the typical WSS‐β‐CDP ER fluid was 6.2 kPa in 4 kV/mm, which is 35% higher than that of NS‐β‐CDP and similar to that of CLS‐β‐CDP. In the meantime, it can display a high ER performance even over a range of 65–95°C. The structures of these polymers were characterized by FT‐IR and Raman spectrometry, respectively. The results demonstrated that all of these polymers keep the original structural character of β‐CD and the copolymerizations between starch and β‐CD indeed occur. Furthermore, it was found that there was some relationship between the characteristic strength of polymers and their dielectric properties. Hence, the improvement of copolymer dielectric properties resulted in the enhancement of ER effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1681–1686, 2004  相似文献   

11.
An efficient synthesis of optically pure cis‐4‐formyl‐β‐lactams (up to 99% ee) by a chiral NHC‐catalyzed ring expansion reaction has been realized, featuring the ready availability of both the substrate and the catalyst, and the mild reaction conditions. The current method is also suitable for the synthesis of enantioenriched 4‐formyl‐β‐lactams and succinimides containing quaternary carbon centers.  相似文献   

12.
The highly catalytic asymmetric α‐hydroxylation of 1‐tetralone‐derived β‐keto esters and β‐keto amides using tert‐butyl hydroperoxide (TBHP) as the oxidant was realized by a chiral N,N′‐dioxide‐magnesium ditriflate [Mg(OTf)2] complex. A series of corresponding chiral α‐hydroxy dicarbonyl compounds was obtained in excellent yields (up to 99%) with excellent enantioselectivities (up to 98% ee). The products were easily transformed into useful building blocks and the precursor of daunomycin was achieved in an asymmetric catalytic way for the first time.  相似文献   

13.
The first organocatalytic enantioselective aza‐Michael addition of purine bases to α,β‐unsaturated ketones has been developed, affording Michael adducts in moderate to high yields (up to 96% yield) and high to excellent enantioselectivities (up to >99% ee). A wide range of α,β‐unsaturated ketones including aliphatic and aromatic enones are tolerated in this process, generally demonstrating good reactivity, regioselectivity and enantioselectivity. The aromatic α,β‐unsaturated ketones showing quite low reactivity in the reported catalytic systems, were first successfully employed as Michael acceptors in this transformation, yielding high enantioselectivities (up to 94% ee). The utility of this method was also applied for the synthesis of enantioenriched non‐natural nucleoside analogues with potential biological activities.  相似文献   

14.
It was shown that the catalytic hydrogenation of α‐iminophosphonates by molecular hydrogen can serve as a convenient method for the synthesis of racemic and optically active α‐aminophosphonates. Up to 94% ee was achieved in the rhodium‐catalyzed enantioselective hydrogenation using chiral ligand (R)‐BINAP.  相似文献   

15.
An enantioselective aza‐Friedel–Crafts reaction of indoles with γ‐hydroxy‐γ‐lactams using a chiral phosphoric acid catalyst is reported. The approach described herein provides an efficient access to 5‐indolylpyrrolidinones in good to quantitative yields and excellent enantioselectivities (up to >99% ee). The results suggest that the reaction may proceed via N‐acyliminium intermediates associated with the chiral phosphoric acid anion.  相似文献   

16.
Regio‐ and stereoselective reductions of α‐substituted 1,3‐diketones to the corresponding β‐keto alcohols or 1,3‐diols by using commercially available ketoreductases (KREDs) are described. A number of α‐monoalkyl‐ or dialkyl‐substituted symmetrical as well as non‐symmetrical diketones were reduced in high optical purities and chemical yields, in one or two enzymatic reduction steps. In most cases, two or even three out of the four possible diastereomers of α‐alkyl‐β‐keto alcohols were synthesized by using different enzymes, and in two examples both ketones were reduced to the 1,3‐diol. By replacing the α‐alkyl substituent with the OAc group, 1‐keto‐2,3‐diols, as well as 1,2,3‐triols were synthesized in high optical purities. These enzymatic reactions provide a simple, highly stereoselective and quantitative method for the synthesis of different diastereomers of valuable chiral synthons from non‐chiral, easily accessible 1,3‐diketones.  相似文献   

17.
A new enantioselective synthetic method for the synthesis of α,α‐dialkylmalonates with a quaternary carbon center was developed via α‐alkylation of prochiral malonates by phase‐transfer catalysis (PTC). Asymmetric α‐alkylation of benzylideneamino tert‐butyl α‐methylmalonates under phase‐transfer catalytic conditions in the presence of (S,S)‐3,4,5‐trifluorophenyl‐NAS bromide afforded the corresponding α,α‐dialkylmalonates in high yields (up to 97%) with excellent enantioselectivities (up to 98% ee). The products were then selectively hydrolyzed to chiral malonic monoacids under basic, acidic, or catalytic hydrogenation conditions.

  相似文献   


18.
BACKGROUND: 1,3‐1,4‐β‐D‐glucanase (1,3‐1,4‐β‐D‐glucan 4‐glucanohydrolase; EC 3.2.1.73) has been used in a range of industrial processes. As a biocatalyst, it is better to use immobilized enzymes than free enzymes, therefore, the immobilization of 1,3‐1,4‐β‐D‐glucanase was investigated. RESULTS: A 1,3‐1,4‐β‐D‐glucanase gene from Fibrobacter succinogenes was overexpressed in Escherichia coli as a recombinant protein fused to the N terminus of oleosin, a unique structural protein of seed oil bodies. With the reconstitution of the artificial oil bodies (AOBs), refolding, purification, and immobilization of active 1,3‐1,4‐β‐D‐glucanase was accomplished simultaneously. Response surface modeling (RSM), with central composite design (CCD), and regression analysis were successfully applied to determine the optimal temperature and pH conditions of the AOB‐immobilized 1,3‐1,4‐β‐D‐glucanase. The optimal conditions for the highest immobilized 1,3‐1,4‐β‐D‐glucanase activity (7.1 IU mg?1 of total protein) were observed at 39 °C and pH 8.8. Furthermore, AOB‐immobilized 1,3‐1,4‐β‐D‐glucanase retained more than 70% of its initial activity after 120 min at 39 °C, and it was easily and simply recovered from the surface of the solution by brief centrifugation; it could be reused eight times while retaining more than 80% of its activity. CONCLUSIONS: These results indicate that the AOB‐based system is a comparatively simple and effective method for simultaneous refolding, purification, and immobilization of 1,3‐1,4‐β‐D‐glucanase. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
The ramipril derivative N,N′‐dioxide 3g ‐indium(III) complex was found to be an efficient catalyst for the allylation of the aromatic α‐keto phosphonates. The corresponding α‐hydroxy phosphonates were obtained with high yields (up to 98 %) and high enantioselectivities (up to 91 % ee). A bifunctional catalyst system was described with an N‐oxide as Lewis base activating tetraallyltin and indium as Lewis acid activating aromatic α‐keto phosphonates. A possible catalytic cycle has been proposed to explain the mechanism of the reaction.  相似文献   

20.
A new, highly efficient and mild N‐heterocyclic carbene (NHC)‐mediated organocatalytic procedure for the transfer of tin from tributyl(trimethylsilyl)stannane (Bu3SnSiMe3) onto aldehydes for the preparation of α‐silyloxyalkylstannanes and γ‐silyloxyallylstannanes has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号