首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we show that cold-rolling of tungsten (W) decreases the stable crack growth onset temperature. Furthermore, we show that stable crack growth is accompanied by crack bridging, which in turn is triggered by dislocation activity. The entire stable crack growth regime shows ductile intergranular fracture.Our ductilisation approach is the modification of microstructure through cold-rolling. In this work, we assess two different microstructures obtained from (i) cold-rolled and (ii) severely cold-rolled tungsten plates. From these plates, single-edge cracked-plate tension (SECT) specimens were cut and tested in the L-T direction. Crack growth resistance (R) curves were obtained using the direct-current-potential-drop method (DCPM). The experiments show the following results: cold-rolled plates are brittle at room temperature (RT), but show stable crack growth at 250 °C (523 K) and a fracture toughness, KIQ, of about 100 MPa(m)1/2 at a crack extension, Δa, of 0.6 mm. Severely cold-rolled tungsten plates show stable crack growth at RT and a fracture toughness, KIQ, of 100 MPa(m)1/2 at a crack extension, Δa, of 0.3 mm. Scanning electron microscopy (SEM) analyses of the stable crack growth region show intergranular fracture with microductile character.The question of why cold-rolling causes the stable crack growth onset temperature to decrease (or in other words, why cold-rolling causes the brittle-to-ductile transition (BDT) temperature to decrease) is discussed against the background of (i) intrinsic and extrinsic size effects, (ii) crystallographic texture, (iii) impurities and (iv) the role of dislocations. Our results suggest that the spacing between the dislocation nucleation sites (high angle grain boundaries (HAGBs) act as dislocation source) is the most important parameter responsible for the decrease of the stable crack growth onset temperature.  相似文献   

2.
《Intermetallics》2007,15(3):241-244
The coefficients of thermal expansion (CTE) of the W5Si3 and T2 phases of the W–Si–B system were determined using high-temperature X-ray diffraction in the 298–1273 K temperature interval. Alloys with nominal compositions 62.5W37.5Si (at%) and 58W21Si21B (at%) were prepared from high-purity materials through arc melting followed by heat treatment at 2073 K for 12 h under argon atmosphere. The highly different thermal expansion coefficients of W5Si3 along the a (5.0 × 10−6 K−1) and c (16.3 × 10−6 K−1) axes lead to a high thermal expansion anisotropy (αc/αa  3.3). On the other hand, the T2-phase exhibits similar thermal expansion coefficients along the a (6.9 × 10−6 K−1) and c (7.6 × 10−6 K−1) axes, indicating a behavior close to isotropic (αc/αa  1.1).  相似文献   

3.
In this work, the bimodal WC-Co coatings were sprayed by high-velocity oxygen-fuel (HVOF), and the conventional WC-Co coatings were also fabricated for comparison. The microstructure, mechanical properties and high temperature wear performance were investigated. The bimodal WC-Co coating presented denser structure (porosity lower than 1.0%), higher average hardness (1164 HV0.1) and fracture toughness (11.5 ± 1.4 MPa·m1/2) than that of conventional coating. The Weibull analysis of microhardness data of the bimodal coating presents a mono-modal distribution. The friction coefficient and wear rate of the bimodal coating were 0.61 and 2.96 × 10 6 mm3·N 1·m 1, respectively, which is lower than that of conventional coating at the test temperature of 450 °C. The tribofilm could be formed on the worn surface of bimodal WC-Co coating, which is composed of WO3 and CoWO4. The formation of tribofilm could reduce friction and wear.  相似文献   

4.
Tungsten and tungsten alloys are widely used in high temperature environments where arc ablation or mechanical deformation and damage are the main sources of materials failure. For high temperature critical applications in thermomechanical environments, however, the low strength limits the use of tungsten and tungsten alloys. Hence, new tungsten based materials with good high temperature thermomechanical properties need to be developed in order to extend the use of tungsten. TiC particle-reinforced tungsten based composites (TiCp/W) were fabricated by hot pressing at 2000 °C, 20 MPa in a vacuum of 1.3×10−3 Pa. The composites were examined with respect to their thermophysical and mechanical properties at room temperature and at elevated temperature. Vickers hardness and elastic modulus increased with increasing TiC content from 0 to 40 vol.%. The highest flexural strength, 843 MPa, and the highest toughness, 10.1 MPa m1/2, of the composites at room temperature were all obtained when 20 vol.% TiC particle were added. As the test temperature rose, the flexural strength of the TiCp/W composites firstly increased and then decreased, except in the monolithic tungsten. The highest strength of 1155 MPa was measured at 1000 °C in the composite containing 30 vol.% TiC particles. The strengthening effect of TiC particles on the tungsten matrix is more significant at high temperatures. With the addition of TiC particles, the thermal conduction of tungsten composites was drastically decreased from 153 W m−1 K−1 for monolithic W to 27.9 W m−1 K−1 for 40 vol.% TiCp/W composites, and the thermal expansion was also increased. The new composites are successfully used to make high temperature grips and moulds.  相似文献   

5.
Thermal protection coating based on Zr0.75Ce0.25O2/phosphate system was fabricated on polymer–matrix composites via a combined sol–gel/sealing treatment process. Phosphates sealed the cracks and enhanced the adhesion property via chemical bonding and binding. The Zr0.75Ce0.25O2/phosphate duplex coating exhibited good thermal shock resistance and improved thermal oxidation resistance of the substrate. Due to the protection of the duplex coating, the weight loss of the specimen reduced from (4.83 ± 0.12)% to (0.98 ± 0.08)% and the mass ablation rate decreased from 0.088 ± 0.002 mg cm−2 s−1 to 0.018 ± 0.002 mg cm−2 s−1 when testing at 810 °C. Coating failure was attributed to the formation of cracks and delamination.  相似文献   

6.
Thin film of spinel LiMn2O4 was obtained by spin coating the chitosan-containing precursor solution on a platinumized Si substrate, followed by a two-step annealing procedure at 300 and 700 °C, respectively. It was demonstrated that the addition of the appropriate amount of chitosan to the precursor solution enhanced the deposition of LiMn2O4 films. The thickness of the deposited film from chitosan-containing precursor solution is about 5.2 μm after five-time spin coating under a spinning speed of 2500 rpm. Without the addition of chitosan in precursor solution, the deposited film was as thin as 0.16 μm under the same processing parameters. Furthermore, the electrochemical behavior for the deposited LiMn2O4 film calcined at 700 °C for 1 h was characterized by the charge–discharge test. The result shows that the 1st discharge capacity is 56.31 μAh cm−2 μm−1 at a discharge rate of C/2 and the fading rate of the discharge capacity is only 0.19% cycle−1 after 50 cycles.  相似文献   

7.
New devices and methods for the plasma detonation deposition of coatings, which give a permanent delivery of gases and powders into the combustion chamber, have been developed. They allow one to increase the delivery accuracy and to promote an operation frequency of 2–20 Hz for these detonation devices. Non-stationary regimes of the detonation combustion of a combustible gaseous mixture are found allowing the introduction of an additional electrical energy and the control of the pulsed jet characteristics, as well as the ability to change the jet power density from 103 to 107 W cm−2, the jet temperature from 2×103 to 3×104 K and its velocity from 600 to 8000 m s−1. A new type of device has been developed. Using this device coatings from α-Al2O3 and hard alloy WC(88%)–Co(12%) powders have been produced. Analysis has demonstrated that these coatings are of better quality than those deposited using traditional gas-detonation technology.  相似文献   

8.
The cyclic dynamic loading behaviour of a multilayer TiAlSiN coating on M2 steel was systematically investigated using repetitive nano-impact over a wide range of impact load. Its behaviour was compared with a monolayer TiN on the same substrate. When the load was increased to 10 mN and 30 mN for the TiN and TiAlSiN coatings, respectively, cracks started to appear during the tests demonstrated as depth steps in the impact depth curves. The improved crack resistance of TiAlSiN coating is consistent with its higher H/Er and H3/Er2 measured by nanoindentation. The impact footprints were studied from both top-view and cross-sectional view using a focused ion beam microscope and SEM. Spallation was observed in both coatings at higher impact loads. TiAlSiN coating shows much less spallation due to its multilayer structure. The cross-sectional study discovered that the cracks were initiated within the coating. A simple model has been used to study the power law relationship between the impact volume loss and the impact velocity.  相似文献   

9.
Continuous, uniform Hf(Ta)C coating was co-deposited on carbon/carbon composites by chemical vapor deposition. The phase composition, microstructure and ablation properties of the Hf(Ta)C coating are investigated. Results show that the as-prepared coating is a biphasic coating consisting of HfC and HfTaC2. The particle-stacked structure is effective to produce a crack free Hf(Ta)C coating and good adhesion between the coating and C/C composites. The Hf(Ta)C coating can effectively protect C/C composites from ablation. After 60 s ablation, the mass and linear ablation rates of coated sample are 0.01 ± 0.02 mg cm−2 s−1 and 0.46 ± 0.02 μm s−1, respectively.  相似文献   

10.
Here we show that cold-rolling is a method to achieve room-temperature ductility in commercial purity, monolithic tungsten (W). Furthermore, we show that a decrease in rolling temperature concomitantly increases the strength and ductility of tungsten. So cold-rolling is a way to overcome the strength–ductility trade-off.In this work, we assess three different cold-rolled microstructures obtained from rolling at (i) 1000 °C (1273 K), (ii) 800 °C (1073 K), and (iii) 600 °C (873 K). Benchmark experiments were performed on a sintered ingot as well as on a hot-rolled plate. From these plates tensile test specimens were cut by spark erosion and tested at room temperature. The results show an increase of total uniform elongation, Aut, ranging from 1.38% (cold-rolled at 1000 °C (1273 K), and 800 °C (1073 K)) up to 1.47% (cold-rolled at 600 °C (873 K)) and an increase of the total elongation to fracture, At, ranging from approximately 3% (cold-rolled at 1000 °C (1273 K), and 800 °C (1073 K)) up to 4.19% (cold-rolled at 600 °C (873 K)) with decreasing rolling temperature.The microstructure of the plates is analysed by means of scanning electron microscopy (SEM) (grain size, subgrains, crystallographic texture) and transmission electron microscopy (TEM) (bright field imaging, scanning TEM). Furthermore, strain-rate jump tests have been performed at 400 °C (673 K) to determine the strain-rate sensitivity, m, (sintered ingot m = 0.088, cold-rolled at 600 °C (873 K) m = 0.011) and the activation volume, V, (hot-rolled W plate V = 191 b3, cold-rolled at 600 °C (873 K) V = 111 b3) of the tungsten sheets.The question of why cold-rolling increases both strength and ductility is discussed against the background of cold-rolling-induced lattice defects. We speculate that the increase of ductility is caused by the ordered glide of screw dislocations, that move with low deformation incompatibility along the high-angle grain boundary (HAGB) channels (confined plastic slip).  相似文献   

11.
《Acta Materialia》2008,56(16):4172-4182
The composition, structure and mechanical properties of pulsed-DC unbalanced magnetron sputtered Ti–Si–B thin films—hard coatings with the potential for excellent thermal stability and oxidation resistance—are investigated and reported in this paper. Fully dense, hard (19–37 GPa) Ti–Si–B coatings were deposited at substrate bias voltages (Vs) ranging from floating potential to −150 V which resulted in substrate temperatures of ∼90–135 °C. We found that variation of substrate biasing conditions critically affected film composition, structure and resultant mechanical properties. For instance, concentration of Si in films decreased from 18.4 at.% to 3.8 at.% as Vs was increased from floating potential to −150 V; composition profile analysis of the near-surface region of films (0–10 nm) revealed them to be rich in Si with significant differences among specimens produced at different substrate bias conditions. Variation of substrate biasing conditions provided coating structures that ranged from completely amorphous at floating substrate potential to nanocrystalline at Vs = −50 to −100 V and crystalline nanocolumnar at Vs = −150 V. We found that each of the structures obtained exhibited different specific values of hardness and elastic modulus, which is also in a good agreement with results reported for other coatings possessing similar micro- and nano-structures. Film structure was analyzed in detail by conventional and analytical transmission electron microscopy. Coatings that exhibited the highest values of hardness (37 GPa) were found to possess features such as crystalline nanocolumnar grains a few nanometres in diameter and disordered intergranular regions of different chemical composition, thus qualifying as nanocomposite films. Results of this work allowed relationships to be drawn between deposition parameters and Ti–Si–B coating composition, structure and mechanical properties. Qualitatively similar relationships are also expected for other biased plasma-assisted physical vapour deposited transition-metal-based ceramic coatings alloyed with Si (e.g. Ti–Si–N, Cr–Si–N, Cr–Al–Si–N).  相似文献   

12.
Transition metal silicides and carbides are attractive advanced materials possessing unique combinations of physical and mechanical properties. However, conventional synthesis of bulk intermetallics is a challenging task because of their high melting point. In the present research, titanium carbides and silicides composites were fabricated on the titanium substrate by a selective laser melting (SLM) of Ti–(20,30,40 wt.%)SiC powder mixtures by an Ytterbium fiber laser with 1.075 μm wavelength, operating at 50 W power, with the laser scanning speed of 120 mm/s. Phase analysis of the fabricated coatings showed that the initial powders remelted and new multiphase structures containing TiCx, Ti5Si3Cx, TiSi2 and SiC phases in situ formed. Investigation of the microstructure revealed two main types of inhomogeneities in the composites, (i) SiC particles at the interlayer interfaces and, (ii) chemical segregation of the elements in the central areas of the tracks. It was suggested and experimentally proven that an increase in laser power to 80 W was an efficient way to improve the laser penetration depth and the mass transport in the liquid phase, and therefore, to fabricate more homogeneous composite. The SLM Ti–(20,30,40 wt.%)SiC composites demonstrated high hardness (11–17 GPa) and high abrasive wear resistance (3.99 × 10−7–9.51 × 10−7 g/Nm) properties, promising for the applications involving abrasive wear.  相似文献   

13.
Here we show that cold rolling decreased the brittle-to-ductile transitions (BDT) temperature of tungsten (W). Furthermore, we show that the BDT temperature correlates with the grain size (the smaller the grain size, the lower the BDT temperature) following a Hall–Petch-like equation. This relation between the grain size and the BDT temperature is well known from ferrous materials and is generally accepted in the steel community.Our ductilisation approach is the modification of the microstructure through cold rolling. In this work, we assess three different microstructures obtained from (i) hot-rolled, (ii) cold-rolled, and (iii) hot-rolled and annealed (1 h/2000 °C, annealed in H2) tungsten plates. From these plates, Charpy impact test samples with dimensions of 1 × 3 × 27 mm3, without notch, were cut and tested in the L-S and T-S directions. The results show the following BDT temperatures: 675 °C/948 K (L-S, “annealed”), 375 °C/648 K (L-S, “hot-rolled”) and 125 °C/398 K (L-S, “cold-rolled”). The microstructure of the plates is analysed by means of SEM (EBSD: grain size, subgrains, texture, KAM), FIB (channelling contrast) and TEM analyses (bright field imaging).The question of how cold rolling decreases the BDT temperature is discussed against the background of (i) microcracking, crack branching, and crack bridging effects; (ii) texture effects; (iii) the role of dislocations; and (iv) the impact of impurities, micropores, and sinter pores. Our results suggest that the availability of dislocation sources (dislocation boundaries, grain boundaries; in particular, IDBs and HAGBs) is the most important parameter responsible for the increase of the cleavage resistance stress, σF, or the decrease of the BDT temperature, respectively.  相似文献   

14.
The Nb-Si alloys are attractive candidate for more advanced aircraft engines, however their oxidation resistances are poor. In this work, silicide coatings were prepared on the Nb-18Ti-14Si-9Al substrate, and we present the concern of this Nb-Si alloy with high Al content, and focused the modification effect of Al on NbSi2 coatings. It is found that composition of the substrate alloy have an essential effect on coatings, which is composed of (Nb,Ti)Si2 outer layer and (Nb,Ti)Si2 + (Nb,Ti)3Si5Al2 inner layer. Underneath inner layer, NbAl3 is formed and surrounded by Nb5Si3. Beyond fracture toughness test, the coating still preserved the integrity and tightly adhered to substrate, no cracks nucleated between substrate and the coating. After oxidation at 1250 °C for 50 h, the mass gain of substrate and silicide coating is 398.85 mg/cm2 and 2.34 mg/cm2 respectively. The excellent oxidation resistance of the coating is proved to benefit from modification effects of high Al in the substrate.  相似文献   

15.
The effects of tungsten additions and temperature on the oxidation behavior of nominally pure ZrB2 and ZrB2 containing 4, 6 or 8 mol% of W after oxidation at temperatures ranging from 800 to 1600 °C were investigated. For pure ZrB2, the protective liquid/glassy layer covering the surface as a result of oxidation was evaporated above 1500 °C. For (Zr,W)B2 specimens, the liquid/glassy layer was present after exposure up to 1600 °C. The higher stability of the liquid/glassy phase in the W-containing compositions was attributed to the presence of tungsten in the liquid/glassy phase, resulting in improved oxidation resistance for ZrB2 samples containing W.  相似文献   

16.
《Synthetic Metals》2006,156(14-15):958-962
We have formed polymeric organic compound chitin film on n-Si substrate by adding a solution of polymeric compound chitin in N,N-dimethylacetamide and lithium chloride on top of an n-Si substrate and then evaporating solvent. It has been seen that the chitin/n-Si contact has demonstrated clearly rectifying behavior and the reverse curves exhibit a weak bias voltage dependence by the current–voltage (I–V) curves studied at room temperature. The barrier height and ideality factor values of 0.959 eV and 1.553, respectively, for this structure have been obtained from the forward bias IV characteristics. Furthermore, the energy distribution of the interface state density located in the semiconductor band gap at the chitin/n-Si substrate in the energy range from (Ec  0.897) to (Ec  0.574) eV have been determined from the IV characteristics. The interface state density, Nss, ranges from 5.965 × 1012 cm−2 eV−1 in (Ec  0.897) eV to 1.706 × 1013 cm−2 eV−1 in (Ec  0.574) eV and has an exponential rise with bias this energy range.  相似文献   

17.
The dynamic mechanical properties of 93W–4.9Ni–2.1Fe alloys in the form of extruded rods sintered by microwave heating were investigated under dynamic compression using a split Hopkinson Pressure Bar. The microstructure and microhardness values of the sintered specimens after dynamic compression were analyzed and tested. The results show that the deformation amount and microhardness of specimens increase with increasing strain rate. When the strain rate is 3000 S 1, the deformation amount is increased to the maximum value of 59.8%, and the microhardness values of the tungsten grains and the matrix phase are also promoted to the maximum values of 7.66 and 6.92 Gpa, respectively. The formation of cracks during compressive deformation initiates before the appearance of the adiabatic shear bands. As the strain rate increases, cracks initiating at the edge of specimens gradually propagate to the bulk alloy, and the adiabatic shear band is observed at about 45° to the loading direction under the strain rate of 3000 S 1. These findings suggest that tungsten-based alloys extruded rods sintered by microwave heating would be an ideal material with excellent self-sharpening and penetration performance for penetrators.  相似文献   

18.
The development of robust high temperature oxidation resistant coatings for Nb–Si based alloy was evaluated for a Mo–Si–B coating system that was applied by a two step process. It is observed that the coating is composed of an outer layer of MoSi2 containing boride dispersoids and an inner layer of unreacted Mo. The mass gain of substrate and Mo–Si–B coating is 190.08 and 1.28 mg cm2 after oxidation at 1250 °C in dry air for 100 h, respectively. The good oxidation resistance of the coating is attributed to the formation of a continuous borosilicate glass coverage.  相似文献   

19.
《Synthetic Metals》2006,156(5-6):488-494
PPy|SO4 and PPy|ClO4 films have been synthesized and investigated in K2SO4, ZnSO4 and NaClO4 aqueous solutions by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and electron probe microanalysis (EPMA) methods. On the basis of obtained data and calculated impedance parameters as the potential functions, the role of different processes (diffusion of ions, double-layer charging, adsorption and charge transfer) in oxidized, partially reduced and reduced PPy films is estimated. The lowest pseudocapacitance values (from n × 10−6 to n × 10−4 μF cm−2 for 1 μm film), independent of solution concentration, were established for PPy|SO4 in ZnSO4. This phenomenon is related with strongly aggravated film reduction process in the solution of double-charged cations. In the case of PPy|ClO4 in NaClO4 and PPy|SO4 in K2SO4,where the mono-charged cations participate in redox process, the capacitance values are in the range from: n × 10−3 to n × 10−2 μF cm−2 and even somewhat higher for PPy|ClO4 system at oxidized state. The calculated effective diffusion coefficients of ions D remain inside the range from n × 10−12 to n × 10−14 cm2 s−1 for PPy|SO4 in 0.1 M K2SO4 and PPy|ClO4 in 0.1 M NaClO4 aqueous solution. In the case of PPy|SO4 film in ZnSO4 solution the D values are essentially lower.  相似文献   

20.
《Synthetic Metals》2002,128(3):267-272
New oligo(polyether) ligands with Schiff base type were synthesized by the reaction of diethyleneglycol bis(2-aminophenyl ether) and triethyleneglycol bis(4-aminophenyl ether) with oligosalicylaldehyde (OSA). OSA was synthesized from the oxidative polycondensation of salicylaldehyde (SA) with air in an aqueous alkaline medium at 90 °C. The products were characterized by 1H-NMR, 13C-NMR, FT-IR, UV–Vis and elemental analysis. The number average molecular weight, Mn, mass average molecular weight, Mw, and polydispersity index values, PDI, of OSA, graft oligo[1,5-di(N-2-oxyphenyl-salicylidene)-3-oxapentane] (compound 4) and graft oligo[1,8-di(N-4-oxyphenyl-salicylidene)-3,6-oxaoctane] (compound 5) were found to be 1690 g mol−1, 5150 g mol−1, 3.05, 1100 g mol−1, 5400 g mol−1, 4.90 and 1100 g mol−1, 5600 g mol−1, 5.01, respectively. TG and DTA analyses were shown to be stable of oligo(polyether) ligands with Schiff base type against thermo-oxidative decomposition. The weight loss of oligo(polyether) ligands with Schiff base type (compounds 4 and 5) were found to be 52 and 56% at 1000 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号