共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
分析超级电容器的制备以及其化学性能,制备出了无定型氧化锰电极,并将制得的氧化锰电极置入电解液中,在一定的电位范围中扫描绘制了循环伏安曲线,另外,将电极在一定电流下放电,分析其可逆性。从测试结果可以看出,这种电极的充放电性能良好,且具有理想的可逆性。 相似文献
4.
以普鲁士蓝(PB)作为前驱体,通过固相烧结法在氮气环境中制备FeSe2材料,结合聚吡咯(PPy)优良的导电性能,利用原位氧化聚合法包覆聚吡咯,设计出了FeSe2@PPy复合材料。在三电极体系中,以2 mol/L KOH溶液为电解液、FeSe2@PPy复合材料为工作电极、Hg/HgO电极为参比电极,FeSe2@PPy复合材料表现出了优良的电化学性能:在0.5 A·g-1电流密度下的比电容高达1 177 F·g-1。同时也测量了FeSe2@PPy复合材料电极的循环性能:在0.5 A·g-1电流密度下,经过3 000次充放电测试后比电容保持率为90.5%。电化学测试结果表明该复合材料在超级电容器应用方面具有一定的优势。 相似文献
5.
金属-有机框架(MOF)衍生的过渡金属硒化物和多孔碳纳米复合材料具有巨大的储能优势,是应用于电化学储能的优良电极材料。采用共沉淀法制备CoFe类普鲁士蓝(CoFe-PBA)纳米立方,并通过静电组装在CoFe-PBA上包覆聚吡咯(PPy)得到CoFe-PBA@PPy;通过在400℃氮气中退火并硒化成功制备了氮掺杂的碳(NC)包覆(CoFe)Se2的(CoFe)Se2@NC纳米复合材料,并对其结构和形貌进行了表征。以(CoFe)Se2@NC为电极制备了超级电容器,测试了其电化学性能,结果表明,在电流密度1 A/g时超级电容器的比电容达到1047.9 F/g,在电流密度5 A/g下1000次循环后具有良好的循环稳定性和96.55%的比电容保持率。由于其性能优越、无毒、成本低和易于制备,未来(CoFe)Se2@NC纳米复合材料在超级电容器中具有非常大的应用潜力。 相似文献
6.
7.
李建平张艺贾晓霞王开鹰张果丽李刚 《微纳电子技术》2023,(10):1586-1598
以单壁碳纳米管(SWCNT)为碳源,氯化镍为金属源,硫脲为氮源和硫源,通过水热和高温热解方法制备N,S-Ni@S@C复合材料,并对复合材料进行物理表征和电化学性能测试。结果表明,SWCNT与硫化镍、氮化镍复合的结构不仅能提高电极材料的电导率,还能提供更多的活性位点供电解质离子插入或脱出,从而显著提高电化学性能。在三电极体系下,N,S-Ni@S@C复合材料具有较高的电压窗口(1.5 V)和优异的充放电能力,在电流密度为1 A·g-1下,N,S-Ni@S@C的比电容可达162.45 F·g-1。其比电容与SWCNT相比提高了2.61倍,与SWCNT和氯化镍复合材料(C@Ni)相比提高了19倍,与SWCNT和硫脲复合材料(C@S@N)相比提高了16倍。此外,以N,S-Ni@S@C复合材料为正极,商业活性炭(YP50F)为负极,组装得到非对称型超级电容器(N,S-Ni@S@C//AC)。该非对称型超级电容器在功率密度为818.78 W·kg-1时,其能量密度可达41.03 W·h·kg-1,在电流密度为1.... 相似文献
8.
9.
碳化蛋壳膜电极表现出良好的循环稳定性:1万次循环后,只观察到3%的电容衰落。有一项新的研究,最近发表于2012年4月刊的《先进能源材料》(Advanced Energy Materials)上,题目为《碳化鸡蛋壳膜具有三维架构可制成高性能电极材料用于超级电容器》 相似文献
10.
《电子元件与材料》2018,(1):35-39
利用化学共沉淀法,制备Co Fe类普鲁士蓝纳米立方(Co Fe PBA)超级电容器电极材料。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品进行物理表征;利用循环伏安法(CV)、恒电流充放电法以及交流阻抗法(EIS)对样品的电化学性能进行研究。结果表明:Co Fe PBA材料为具有面心立方结构的棱长约400 nm的立方颗粒,且表面光滑、颗粒均匀,在氯化钴和铁氰化钾摩尔比为2:1时,产物Co Fe PBA电化学性能最佳,于中性介质1 mol/L硫酸钠溶液中,在1 A/g电流密度下,比电容能达到444.4 F/g,电流密度增大至5 A/g时,比电容仍能保持在423.1 F/g,2000次充放电循环后,在1 A/g电流密度下比电容保持在439 F/g,容量衰减小于2%。 相似文献
11.
化学沉淀法制备纳米Ni(OH)2电极材料及其工艺参数的优化设计 总被引:2,自引:0,他引:2
通过化学沉淀法成功制备了纳米复合氢氧化镍粉体,测得纳米复合氢氧化镍粉体的振实密度低于球镍粉体,但其压实密度明显高于后者;相应镍电极的密度也超过常规球镍电极.实验得出了制备纳米氢氧化镍粉体的温度、氨水浓度与pH值的最佳参数.最终制备出的纳米复合电极材料的压实密度与质量电化学容量两项指标均比常规球镍高15%以上. 相似文献
12.
金属有机框架(MOF)具有比表面积较大、形貌多样和金属中心丰富等优点。然而传统的以对苯二甲酸(BDC)为配体的MOF直接用作超级电容器电极材料时其比电容低、稳定性差。为此以双苯环有机配体2,6萘二羧酸(2,6NDC)为链接剂,采用简单高效的一步溶剂热法成功合成了超薄片状2D纳米阵列2,6NDC MOF材料,对其物相结构和表面形貌进行了表征分析,并探究了其电化学性能。结果表明,在电流密度为1 A·g-1下,基于2,6NDC的超薄片状2D纳米阵列MOF具有较高的比电容,为136.2 F·g-1,而以BDC为配体的MOF比电容只有53.9 F·g-1。以2,6NDC MOF构筑的超级电容器在电流密度0.5 A·g-1下的能量密度为28.2 W·h·kg-1,功率密度为1 650.7 W·kg-1,且在15 000次循环后依然有约125%的初始放电比容量,显示出优异的循环稳定性。 相似文献
13.
氢氧化镍(Ni(OH)2)是碱性二次电池的正极材料,本文采用化学沉淀法制备了纳米Ni(OH)2超微粉体,XRD检测证实晶型为β相,用TEM对粉体进行形貌分析,结果表明所得产物是颗粒状纳米晶,粒径20nm左右.将纳米Ni(OH)2粉以10%的比例掺杂到常规球镍中制得纳米复合β-Ni(OH)2电极材料,其电化学容量和放电平台较常规球镍有很大提高,大电流放电时,纳米复合β—Ni(OH)2电极材料的电化学容量比常规球镍提高达40.9%。 相似文献
14.
采用水热法成功合成了CaMoO4/氧化石墨烯(GO)纳米复合材料。通过材料的表面形貌、晶体结构和电化学性能研究合成的纳米复合材料。结果表明,CaMoO4/GO电极在电流密度0.5 A/g时比电容高达571.82 F/g,并且在1 A/g的电流密度下,经过1000次循环后的比电容保持率仍为84%。为了测试电极材料的实际应用效果,全固态超级电容器(ASC)分别使用CaMoO4/GO和活性炭(AC)作为正极和负极进行组装。组装的ASC在功率密度1710.3 W/kg下显示出25.18 W·h·kg-1的能量密度,并且能通过串联4个ASC为红色发光二极管供电。上述结果表明CaMoO4/GO电极材料在高性能储能设备的应用中具有非常大的潜力。 相似文献
15.
采用水热法合成了以4,4′-联苯二甲酸(BPDC)为配体的Ni-金属有机框架(MOF),利用低成本、无污染的物理超声法在不改变Ni-MOF晶体结构的前提下对其进行改性,使块状Ni-MOF表面产生孔隙,改善Ni-MOF表面微/纳米结构,提高其电化学性能。通过扫描电子显微镜(SEM)图、X射线衍射(XRD)谱、循环伏安(CV)曲线和恒电流充放电(GCD)曲线分析了改性前后Ni-MOF的微结构形貌和电化学性能。结果表明,经过超声处理后,Ni-MOF的比表面积从40.6 m^2·g^-1增加到65.8 m^2·g^-1,平均孔径从12 nm增加到22 nm。在0.5 A·g^-1电流密度下,超声处理后Ni-MOF电极比电容从420 F·g^-1增加到515 F·g^-1,提高了22.6%,电荷转移电阻明显降低,从25.11Ω降低到15.51Ω。因此,物理超声法可有效改善Ni-MOF表面微/纳米结构,提高其电化学性能。 相似文献
16.
17.
以Mn(NO3)2、活性中间相碳微球(活性MCMB)为原料,采用KBrO3氧化法,成功制备了MnO2/活性MCMB新型复合电极材料;以该材料制成电极,并以质量分数为30%的KOH溶液为电解液,组装成扣式电容器。通过XRD和SEM分析了MCMB,活性MCMB及MnO2/活性MCMB的晶相结构和表面形态;采用循环伏安、交流阻抗和恒流充放电法研究了电容器的电容性能。结果表明:以MnO2/活性MCMB复合电极制成的电容器电容性能优良。在0.5A/g电流密度下,其充放电曲线表现出典型的电容行为,初始比容量高达403.5F/g,相应能量密度为12.5Wh/kg;其循环伏安曲线关于零电流线对称,呈现为较规则的矩形;其等效串联电阻约为0.7Ω。 相似文献
18.
通过化学沉淀法成功制备了纳米复合氢氧化镍粉体,测得纳米复合氢氧化镍粉体的振实密度低于球镍粉体,但其压实密度明显高于后者;相应镍电极的密度也超过常规球镍电极。实验得出了制备纳米氢氧化镍粉体的温度、氨水浓度与pH值的最佳参数。最终制备出的纳米复合电极材料的压实密度与质量电化学容量两项指标均比常规球镍高15%以上。 相似文献
19.