首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films (d  1 μm) of hydrogenated amorphous silicon carbide (a-Si1?xCx:H), deposited by RF reactive magnetron sputtering with different carbon content x, have been implanted with high fluences (Φ = 1016–1017 cm?2) of high-energy (E = 0.2–1 MeV) He+ ions as the implant species. The induced structural modification of the implanted material results in a considerable change of its optical properties, best manifested by a significant shift of the optical absorption edge to lower photon energies as obtained from photo-thermal-deflection spectroscopy (PDS) data. This shift is accompanied by a remarkable increase of the absorption coefficient over one order of magnitude (photo-darkening effect) in the measured photon energy range (0.6–3.8 eV), depending on the ion fluence, energy and carbon content of the films. These effects could be attributed both to additional defect introduction and increased graphitization, as confirmed by Raman spectroscopy and infra-red (IR) optical transmission measurements. The optical contrast thus obtained (between implanted and unimplanted film material) could be made use of in the area of high-density optical data storage using focused high-energy He+ ion beams.  相似文献   

2.
Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm?2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.  相似文献   

3.
Metastable pseudomorphic Ge0.06Si0.94 alloy layers grown by molecular beam epitaxy (MBE) on Si (1 0 0) substrates were implanted at room temperature by 70 keV BF2+ ions with three different doses of 3 × 1013, 1 × 1014, and 2.5 × 1014 cm−2. The implanted samples were subsequently annealed at 800°C and 900°C for 30 min in a vacuum tube furnace. Observed by MeV 4He channeling spectrometry, the sample implanted at a dose of 2.5 × 1014 BF2+ cm−2 is amorphized from surface to a depth of about 90 nm among all as-implanted samples. Crystalline degradation and strain-relaxation of post-annealed Ge0.06Si0.94 samples become pronounced as the dose increases. Only the samples implanted at 3 × 1013 cm−2 do not visibly degrade nor relax during anneal at 800°C . In the leakage current measurements, no serious leakage is found in most of the samples except for one which is annealed at 800°C for 30 min after implantation to a dose of 2.5 × 1014 cm−2. It is concluded that such a low dose of 3 × 1013 BF2+ cm−2 can be doped by implantation to conserve intrinsic strain of the pseudomorphic GeSi, while for high dose regime to meet the strain-relaxation, annealing at high temperatures over 900°C is necessary to prevent serious leakages from occuring near relaxed GeSi/Si interfaces.  相似文献   

4.
6H-SiC single crystals were implanted with 450 keV Al+-ions to a fluence of 3.4 × 1015 cm?2 , and in a separate experiment subjected to multiple Al+ implantations with the four energies: 450, 240, 115 and 50 keV and different fluences to obtain rectangular-like depth distributions of Al in SiC. The implantations were performed along [0 0 0 1] channeling and non-channeling (“random”) directions. Subsequently, the samples were annealed for 10 min at 1650 °C in an argon atmosphere. The depth profiles of the implanted Al atoms were obtained by secondary ion mass spectrometry (SIMS). Following implantation and annealing, the samples were beveled by mechanical polishing. Confocal micro-Raman spectroscopic investigations were performed with a 532 nm wavelength laser beam of a 1 μm focus diameter. The technique was used to determine precisely the depth profiles of TO and LO phonon lines intensity in the beveled samples to a depth of about 2000 nm. Micro-Raman spectroscopy was also found to be useful in monitoring very low levels of disorder remaining in the Al+ implanted and annealed 6H-SiC samples. The micro-Raman technique combined with sample beveling also made it possible the determination of optical absorption coefficient profiles in implanted subsurface layers.  相似文献   

5.
Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at λ = 1.5 μm, which could be used as an optical amplifier or waveguide laser. We have focused on the structure of Er:LiNbO3 layers created by 330 keV erbium ion implantation (fluences 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm?2 1) in the X, Z and two various Y crystallographic cuts of LiNbO3. Five hours annealing at 350 °C was applied to recrystallize the as-implanted layer and to avoid clustering of Er. Depth distribution of implanted Er has been measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. Defects distribution and structural changes have been described using the RBS/channelling method. Data obtained made it possible to reveal the relations between the crystallographic orientation of the implanted crystal and the behaviour during the restoration process. The deepest modified layer has been observed in the perpendicular Y cut, which also exhibits the lowest reconstruction after annealing. The shallowest depth of modification and good recovery after annealing were observed in the Z cut of LiNbO3. Since Er-depth profiles changed significantly in the perpendicular Y cut, we suppose that the crystal structure recovery inhibits Er mobility in the crystalline structure.  相似文献   

6.
Formation of Si1−xGex-alloy layers by solid phase epitaxial growth (SPEG) of Ge+ ion implanted silicon has been studied. The ion implantations were performed with 40, 100, 150, 200 and 300 keV 74Ge+ ions and various ion doses. The SPEG of the ion implanted layers was carried out in a conventional furnace at 850°C for 20 min under a flow of nitrogen gas. The Si1−xGex-alloy layers were characterised by Rutherford backscattering spectrometry and transmission electron microscopy (TEM). For a given ion energy, a Si1−xGex-alloy layer with no observable extended defects can be manufactured if the ion dose is below a critical value and strain-induced defects are formed in the alloy layer when the ion dose is equal to or above this value. The critical Ge+ ion dose increases with ion energy, while the critical maximum Ge concentration decreases. For ion energies ⩽150 keV, the defects observed in the alloy layers are mostly stacking faults parallel to the {1 1 1} planes. For higher ion energies, 200 keV and above, the majority of defects in the alloy layer are hairpin dislocations. In the whole ion energy range, the critical ion dose and the depth position of the nucleation site for the stacking faults obtained from the measurements are in good agreement with theoretical predictions. Extended defects are formed in the alloy layer during the SPEG when the regrowth of the crystalline/amorphous interface has reached the depth position in the crystal where the accumulated strain energy density is equal to the critical value of 235 mJ/m2.  相似文献   

7.
Ion implantation induced damage formation and subsequent annealing in 4H–SiC in the temperature range of 100–800 °C has been investigated. Silicon Carbide was implanted at room temperature with 200 keV 40Ar ions with two implantation fluences of 4 × 1014 and 2 × 1015 ions/cm2. The samples were characterized by Rutherford backscattering and nuclear reaction analysis techniques in channeling mode using 2.00 and 4.30 MeV 4He ion beams for damage buildup and recovery in the Si and C sublattices, respectively. At low ion fluence, the restoration of the Si sublattice is evident already at 200 °C and a considerable annealing step occurs between 300 and 400 °C. Similar results have been obtained for the C sublattice using the nuclear resonance reaction for carbon, 12C(α,α)12C at 4.26 MeV. For samples implanted with the higher ion fluence, no significant recovery is observed at these temperatures.  相似文献   

8.
Ge nanocrystals embedded in SiO2 matrix have been synthesized by swift heavy ion irradiation of Ge implanted SiO2 films. In the present study, 400 keV Ge+ ions were implanted into SiO2 films at dose of 3 × 1016 ions/cm2 at room temperature. The as-implanted samples were irradiated with 150 MeV Ag12+ ions with various fluences. Similarly 400 keV Ge+ ions implanted into Silicon substrate at higher fluence at 573 K have been irradiated with 100 MeV Au8+ ions at room temperature (RT). These samples were subsequently characterized by XRD and Raman to understand the re-crystallization behavior. The XRD results confirm the presence of Ge crystallites in the irradiated samples. Rutherford backscattering spectrometry (RBS) was used to quantify the concentration of Ge in the SiO2 matrix. Variation in the nanocrystal size as a function of ion fluence is presented. The basic mechanism of ion beam induced re-crystallization has been discussed.  相似文献   

9.
In this study the boron lattice site location in ternary BxGa1?xAs and BxGa1?xP thin films grown on (0 0 1) GaAs and (0 0 1) GaP, respectively, using low pressure metal-organic vapour-phase epitaxy (MOVPE) with boron concentrations between x = 0.8% and x = 3.2% was investigated with RBS and the 10B(α,p)13C nuclear reaction using a 2.3 MeV He+ ion beam. For this purpose, the ion beam was aligned with the [0 0 1], [0 1 1] and [1 1 1] axis and the RBS and proton yield from the nuclear reaction compared with random ion incidence. For comparison, theoretical proton yields which assume boron to be located on substitutional lattice sites only were calculated for each sample/axis combination and compared with the experimental yields. The RBS/channeling measurements show a very good crystal quality of the films with χmin being in the range of 3–5% for the [0 1 1] axis. The best crystal qualities, i.e. the lowest χmin values and dechanneling rates, are achieved for low boron concentrations. From NRA/channeling it can be deduced that in the BxGa1?xAs films the fraction of interstitial boron is approximately 5% for low boron concentrations of x = 1% and 6–10% for concentrations up to x = 3.2%, whereas the fraction of interstitial boron is less than 3% in the BxGa1?xP film studied despite a concentration of x = 2.0%. This indicates that antisite effects of the boron incorporation are more likely in GaAs compared to GaP.  相似文献   

10.
Structure changes and light emission behavior in Er+ implanted SnO2:SiO2 layers are studied, using transmission electron microscopy (TEM), Rutherford backscattering (RBS) and cathodoluminescence (CL). SnO2:SiO2 layers of different composition deposited with RF magnetron sputtering on Si wafers were implanted with 200 keV Er+ to a fluence of 3 × 1015 cm?2 at room temperature. The implanted structures were then annealed at 600–1000 °C for 30 min, resulting in the formation of crystalline SnO2 nanoclusters. Cross-section TEM revealed a strong reduction of the SnO2 crystallite size down to several nanometers in the implanted area of the SnO2:SiO2 layer as compared to the undoped layer. In addition, a very narrow layer of SnO2 nanocrystals appears at the SiO2/Si interface. Several narrow CL emission peaks and wide bands were found which could be related to the decay of SnO2 free excitons, to oxygen deficiency centers in SiO2 and to transitions between the energy levels in the Er ions, apparently located at nanoclusters. The mechanisms of nanostructuring as well as the emission process are discussed.  相似文献   

11.
Hafnium ions were implanted into calcium fluoride single crystals. The lattice damage introduced by the implantation was investigated with the Rutherford backscattering (RBS) channelling technique. The lattice location of the implanted ions was determined by performing channelling measurements for the 〈1 1 0〉 crystal direction. A comparison of the angular scan with Monte Carlo simulations leads to the conclusion that >90% of the Hf ions are on Ca sites directly after implantation. Subsequent annealing of the samples was performed in a rapid thermal annealing apparatus. Perturbed angular correlation (PAC) measurements with 181Hf(181Ta) show quadrupole interactions with νQ1 = 300(3) MHz (η = 0.00), νQ2 = 1285(13) MHz (η = 0.43) and νQ3 = 1035(10) MHz (η = 0.00) after annealing up to 1200 K.  相似文献   

12.
The results of Auger electron spectroscopy and transmission electron microscopy of the surface layer of aluminium after successive implantation by carbon and nitrogen ions are presented in this work. The energy of implanted ions is 40 keV. The implantation dose varies in the range (3.3–6.5) × 1017 ions/cm2. The findings show that successive implantation leads to the formation of two main layers in aluminium. The first layer is AlNCx (0 < x < 0.5) layer with violated hcp. AlN structure, where carbon atoms form bonds with nitrogen atoms. The second layer contains disoriented Al4C3 precipitates and carbon atoms migrated from the first layer. The mechanism of migration is discussed.  相似文献   

13.
Different ion-implanted p-type Hg0.78Cd0.22Te samples were analyzed by infrared reflectivity in the 2–20 μm wavelength range. We show how to derive some characteristic values of the free carriers induced by ion implantation from simple models of the implanted samples. For low energy implantations (Al (320 keV)) an excess of electrons with concentration n+  5 × 1017 cm−3 for doses 1012 and 1014 ions cm−2 is observed between the surface and the projected range Rp of the ions, in agreement with the well-known change of type of the free carriers induced by the ion implantation in this kind of samples. High energy α particle (0.8 and 2 MeV, 1014 ions cm−2) implantations lead to a pronounced inhomogeneous concentration of free electrons with n+  9.2 × 1016 cm−3 between the surface and Rp where a negligible amount of defects due to the nuclear energy loss is formed, and n+  1.6 × 1017 cm−3 between Rp and Rp + ΔRp, ΔRp being the longitudinal straggling, where the defect production rate through the nuclear energy loss mechanism is maximum.  相似文献   

14.
A study of the effects of ion irradiation of organically modified silicate thin films on the loss of hydrogen and increase in hardness is presented. NaOH catalyzed SiNawOxCyHz thin films were synthesized by sol–gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H+ or 250 keV N2+ at fluences ranging from 1 × 1014 to 2.5 × 1016 ions/cm2. Elastic Recoil Detection (ERD) was used to investigate resulting hydrogen concentration as a function of ion fluence and irradiating species. Nanoindentation was used to measure the hardness of the irradiated films. FT-IR spectroscopy was also used to examine resulting changes in chemical bonding. The resulting hydrogen loss and increase in hardness are compared to similarly processed acid catalyzed silicate thin films.  相似文献   

15.
Helium ions of 500 keV were implanted with a fluence of 1.4 × 1017 ion/cm2 into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiOx in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of ±10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO2 volume percentages, a trend similar to those reported of SiOx previously is found.  相似文献   

16.
The effect on the crystalline structure and ferroelectric properties of ion implantation in SrBi2Ta2O9(SBT) ferroelectric thin films has been investigated. 25 keV H+, 140 keV O+ with doses from 1 × 1014/cm2 to 3 × 1015/cm2 were implanted into the Sol–Gel prepared SBT ferroelectric thin films. The X-ray diffraction patterns of SBT films show that no difference appears in the crystalline structure of as-H+-implanted SBT films compared with as-grown films, H+ and O+ co-implanted SBT films show an obvious degradation of crystalline structure. Ferroelectric properties measurements indicate that both remnant polarization and coercive electric field of H+ implanted SBT films decrease with increasing the implantation dose. The disappearance of ferroelectricity was found in the H+, O+ co-implanted SBT films at room temperature. The great recovery of hydrogen-induced degradation in SBT films was obtained with O+ implantation using a heat-target-implantation technique.  相似文献   

17.
The liquid encapsulated czochralski (LEC) grown (1 0 0) oriented n-GaAs have been implanted with low energy H+ and He+ for various doses ranging from 1013–1017 cm−2. Raman spectra of as-grown, H+ and He+ implanted n-GaAs are recorded and analysed. Full width at half maximum (FWHM) of the LO mode decreases up to a dose of 1015 cm−2 for H+ and 1013 cm−2 for He+ and increases at higher doses. Mode narrowing is accompanied by an increase of the area under the peak, while the area under the peak decreases when the mode broadens. The peak position remains almost the same at low doses but decreases at high doses. These results are explained with carrier concentration reduction at low doses and lattice damage at high doses. Annealing of the high dose implanted n-GaAs reduces the FWHM of the LO mode and increases the area under the peak and the peak frequency, due to the annealing of the implantation induced lattice damage.  相似文献   

18.
N+p and p+n diodes were fabricated on p- and n-type 6H–SiC substrates with epitaxial layers, respectively. The charge induced in the diodes by 9 MeV oxygen (O) and nickel (Ni) ions was measured using Transient Ion Beam Induced Current (TIBIC) to clarify the capability of these diodes as particle detectors. As a result of the TIBIC measurements using 9 MeV O, the Charge Collection Efficiency (CCE) of around 83% was obtained for both p+n and n+p diodes. Since the CCE value includes the consumption of incident ion energy in an Al electrode and the n+ (p+) region as well as the decay of charge in the measurement system, the CCE value obtained in this study indicates that SiC n+p as well as p+n diodes are suitable for particle detectors. On the other hand, in the case of 9 MeV Ni ion irradiation, the CCE for both n+p and p+n diodes decreases due to the Auger recombination in dense electron–hole pairs.  相似文献   

19.
The behavior of Mn2+ ions doped into the crystal lattice of Zn2SiO4 is closely related to the luminescent properties of Zn2SiO4:Mn2+ as a color-emitting phosphor. The combined Rietveld refinement using X-ray and neutron powder diffraction was used to determine the site preference and the amount of Mn2+ ions in Zn2SiO4:Mn2+. Of possible cation-disorder models, the best Rietveld refinement was obtained from the model that Mn2+ ions partially substituted for Zn2+ ions in two crystallographically non-equivalent Zn sites. The final converged weighted R-factor, Rwp, and the goodness-of-fit indicator, S (=Rwp/Re) were 8.12% and 2.28, respectively. The occupancy of Mn2+ ions for the two non-equivalent Zn sites was 0.034(4) and 0.003(2), respectively. The refined model described the crystal structure in space group R?3 (No. 148) with Z = 18, a (=b) = 13.9612(1) Å, c = 9.3294(1) Å and γ = 120°.  相似文献   

20.
In this study, we report a method to quantify the helium distribution in the SiCf/SiC composites, which are used as the first-wall materials of fusion reactor. The helium-bubble formation in Hi-Nicalon Type-S (HNS) was observed in the irradiated SiCf/SiC composites at a level of 100 dpa and at 800 °C and 1000 °C, respectively. We applied transmission electron microscopy and electron energy loss spectroscopy to investigate the helium-gas-bubbles-formation mechanisms. To simulate the practical first-wall environment of Deuterium–Tritium (D–T) fusion reactor, a dual-ion beam (6 MeV Si3+ and 1.13 MeV He+) was performed to irradiate the SiCf/SiC composites. The relationship between the energy shift of He K-edge and the radius of the bubble of the SiC composites was estimated by electron energy loss spectroscopy analysis. The results show that all of the helium atoms irradiated at 1000 °C and formed the bubbles. On the other hand, at 800 °C, only 25.5% of the helium atoms form the helium bubbles. A clear thermal-dependent formation mechanism is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号