首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stormwater reuse: designing biofiltration systems for reliable treatment.   总被引:1,自引:0,他引:1  
Stormwater reuse is increasing in popularity as a technique for overcoming water shortages in urban Australia. However, technology for the reliable treatment of stormwater for reuse is still not fully developed. This paper presents the first steps in refining biofilters for stormwater reuse. Six different filter media were selected, to target specific stormwater pollutants, as well as support plant growth. They were tested in the laboratory, where the filters were dosed three times per week with semi-synthetic stormwater for five weeks. Pollutant removal performance was monitored, and revealed that all soil-based filters performed similarly (while sand filters behaved somewhat differently). All filters removed more than 80% of solids and greater than 90% of lead, copper, and zinc. Three filter types were able to remove some phosphorus (particularly in the top 30 cm of the media). Apart from sand, all filter media were net producers of nitrogen, leading to an important conclusion that non-vegetated, soil-based filters are not suitable for targeting nutrients. However, since heavy metals are the primary pollutant of concern with respect to stormwater reuse for irrigation (the most popular end-use), it was concluded that biofilters may be promising technologies for treatment of stormwater for reuse.  相似文献   

2.
This paper presents the results of the long term biofilter experiments conducted with raw stormwater collected from a canal at Carlton, in Sydney. Anthracite and granular activated carbon (GAC) were used as a single filter media in biofilter columns. Media heights of 75 and 40 cm were used. The filter columns were operated at filtration velocities of 0.12 and 0.25 m/h. The removal efficiency for turbidity and DOC for the GAC filter media were found to be 75% and almost 100% respectively. The removal efficiency for the anthracite filter was much lower. Molecular weight distribution analysis showed an almost similar trend to the DOC removal. Compared with anthracite filter media, the GAC biofilter removed a much larger range of organic compounds present in the stormwater. The GAC biofilter removes organic matter earlier as compared to anthracite. Based on a limited sample of stormwater, the removal efficiency for phosphorus was upto 74% and that of nitrogen was up to 30%. In general GAC filter shows higher heavy metal removal efficiency than anthracite. The removal of zinc, iron, lead and nickel were good. However the concentration of heavy metal in the raw surface water sample was low.  相似文献   

3.
An experimental study was undertaken by Monash University to develop and test enviss? stormwater treatment and harvesting technologies - non-vegetated filtration systems with an extremely low footprint. This paper focuses on the water quality and hydraulic performance of two systems tested over a 'year' of operation in a Melbourne climate: (1) REUSE enviss? filters, designed for stormwater harvesting systems for non-potable supply substitution, and (2) WSUD enviss? filters, developed to treat urban stormwater prior to discharge to downstream systems. The presence of chlorine as a disinfection agent proved to be very efficient for the removal of microorganisms in REUSE enviss? filters. WSUD enviss? filters had the benefit of providing an elevated nutrient treatment performance, due to an extended depth of filter media. However, nutrient outflow concentrations (total nitrogen (TN) in particular) were found to increase during the testing period. Also, extended dry weather periods were found to have a detrimental effect on the treatment performance of almost all pollutants for both filters (nutrients, Escherichia coli and heavy metals). Although hydraulic conductivity results indicated two or three sediment trap replacements per year are required to maintain filtration rates, it is expected that the compressed loading rate schedule overestimated this maintenance frequency.  相似文献   

4.
Stormwater filters are widely used in stormwater management, sometimes as standalone structures (e.g. stormwater filter beds), or as part of porous pavements, soak ways, infiltration basins and trenches. Due to the high levels of sediment present in stormwater, clogging is the main operational issue for these systems. A laboratory-based study was conducted to investigate the effect of filter bed design variables on the clogging phenomenon in non-vegetated stormwater filters with high infiltration rates. Design parameters studied include: filter media particle sizes (0.5 mm, 2 mm, 5 mm); depth of the filter bed (100 mm, 300 mm and 500 mm); and filter media packing configurations (layered or mixed). The size of filter media particles significantly impact the clogging process, as well as the overall sediment removal performance of the filters; filters with smaller particles had better sediment removal efficiency, but subsequently shorter lifespan. Deeper systems had longer lifespan compared with shallower ones, notwithstanding deeper systems removed more sediment over their life span. Having two layers of distinct sized media in the filter bed improved performance (e.g. volume of water treated; sediment removed) over the single-layered systems. However, the three-layered systems behaved similarly to two-layered systems. Mixed systems also showed improved performance, as compared with single-layered systems, and were similar to the three-layered systems. This study therefore suggests that simple modifications to a stormwater filtration system can help improve sediment removal performance and/or reduce maintenance intervals significantly, while only slightly affecting sediment removal performance.  相似文献   

5.
Biofiltration systems are an effective stormwater treatment technology. However, their robustness is yet to be tested, particularly their performance following extended dry periods. The hydraulic and treatment performance of five different non-vegetated, soil-based filters under varying periods of inundation and drying was assessed. The infiltration capacity of the filters decreased during wet periods and increased following dry periods, most probably due to swelling and shrinkage of the filter media. Treatment of sediment, heavy metals and phosphorus was not influenced by the wetting and drying regime. However, outflow concentrations of nitrogen were significantly higher upon re-wetting following extended dry periods compared with wet periods. This result has implications for current design practices, as these nitrogen pulses could negatively impact the ecological health of downstream receiving waters.  相似文献   

6.
The use of bioretention areas is common in urban stormwater management, but their performance varies significantly depending on rainfall characteristics and design conditions. In this study, a pilot experiment using bioretention columns with different media (commercial activated carbon and river sediment-derived biochar) investigated the influence of rainfall on bioretention performance. The results indicated that the runoff volume retention ratio (Rv), which included the runoff purified and discharged at the bottom of the column, and the runoff retained in media during rainfall event, decreased significantly with increases in the rainfall event return period (p < 0.05). The Rv of the activated carbon and biochar columns decreased with a 2-yr return period and then fell further with a 50-yr return period. Porous material has been shown to improve the water-holding capacity of bioretention media, but it did not result in an improved Rv under heavy rain that exceeded the 2-yr return period. With the increase of the return period from two to 50 yr, the mass removal efficiency (RL) of total phosphorus and phosphate illustrated a clear decreasing trend in all columns. The total nitrogen, ammonia and nitrate removal did not show a clear trend with return periods because of transformations among different forms of nitrogen and similar saturation periods during the different rainfall events. The influence of the return period on chemical oxygen demand (COD) removal was related to whether the inflow COD reached maximum COD removal capacity of the bioretention media. Under a rainfall event with a specific return period, there were no significant differences in the RL of all nitrogen species and COD among the different columns (p > 0.05). The addition of adsorptive material, such as activated carbon and biochar, may not be the key factor for improving nitrogen and COD removal under heavy rain that exceeds the 2-yr return period. The bioretention performance of phosphorus removal from urban stormwater runoff could be improved by replacing or adding media with high adsorption capacity, but these improvements would not be significant under heavy rain that exceeds the 2-yr return period. The results provide some reference for evaluating bioretention performance and optimizing bioretention design in the future.  相似文献   

7.
As the sewerage system is incomplete, sewage in Korea lacks easily biodegradable organics for nutrient removal. In this country, about 11,400 tons of food waste of high organic materials is produced daily. Therefore, the potential of food waste as an external carbon source was examined in a pilot-scale BNR (biological nutrient removal) process for a half year. It was found that as the supply of the external carbon increased, the average removal efficiencies of T-N (total nitrogen) and T-P (total phosphorus) increased from 53% and 55% to 97% and 93%, respectively. VFAs (volatile fatty acids) concentration of the external carbon source strongly affected denitrification efficiency and EBPR (enhanced biological phosphorus removal) activity. Biological phosphorus removal was increased to 93% when T-N removal efficiency increased from 78% to 97%. In this study, several kinds of PHAs (poly-hydroxyalkanoates) in cells were observed. The observed PHAs was composed of 37% 3HB (poly-3-hydroxybutyrate), 47% 3HV (poly-3-hydroxyvalerate), 9% 3HH (poly-3-hydroxyhexanoate), 5% 3HO (poly-3-hydroxyoctanoate), and 2% 3HD (poly-3-hydroxydecanoate).  相似文献   

8.
In this study, two types of industrial wastewater, oil-refining and steel-milling, were selected for investigating their feasibility of treatment by mesocosm constructed wetland systems. The secondly treated effluents from the wastewater treatment plants were directly discharged into the systems controlled at different flow rates. Three wetland mesocosms were installed in the two industries: mesocosms A and B were in the oil refinery, and mesocosm C was in the steel mill. The substratum media used in wetland systems were sand (mesocosm A) and gravel (mesocosms B and C), while the vegetation types selected were reeds (mesocosms A and B) and mixed species of reeds and cattails (mesocosm C). The flow regimes were controlled as free water surface (FWS) and subsurface flow (SSF) for the sand- and gravel-beds, respectively. According to the experimental results, we found that the system treating oil-refining wastewater performed better than that treating steel-milling wastewater learned by comparing the removal efficiencies of COD, total N and total P. In addition, it was found that for oil-refining wastewater treatments, the SSF wetland system (mesocosm B) performed better than FWS (mesocosm A) wetland system when comparing both of their removal of pollutants and growth of vegetation. Besides, the effluents from these two industrial wetland treatment systems might be reclaimed and reused for boiler water, cooling, cleaning and miscellaneous purposes in industries. Further treatments are required if the constructed wetland effluents are thought about being reused for processing in industries.  相似文献   

9.
以南京水利科学研究院铁心桥试验基地内象目湖微污染水体为对象,研究总氮大于1.0 m3/(m2·d)的高水力负荷条件下,鹅卵石、陶粒、砾石、钢渣、蛭石、碎石和砂子等多种基质和再力花、芦苇、美人蕉及菖蒲等水生植物组合条件下的垂直流湿地和水平潜流湿地对氮磷的去除效果。试验结果表明:进水总氮浓度在0.793~2.662 mg/L时,种植菖蒲,填料从上到下分别为鹅卵石、碎石、粗砂和细砂的垂直潜流湿地单元(20单元)出水总氮平均浓度最低,为0.905 mg/L;总氮、氨氮和硝态氮平均去除率最高,达80.89%,43.06%和46.32%;总氮浓度从Ⅳ类水体提升至Ⅲ类。进水TP浓度在0.035~1.003 mg/L时,20单元总磷平均去除率最高,为30.59%,价格相对便宜的碎石对磷素的去除效果较好。种植菖蒲及填料组合为鹅卵石、碎石、粗砂和细砂的人工湿地处理单元可以应用于饮用水源地原水等微污染水强化处理。  相似文献   

10.
The South-Budapest Wastewater Treatment Plant (SBWWTP) had been operated as a high-load activated sludge (AS) plant since the middle of the 60s. According to the requirements proposed by the water authorities the treatment process had to be upgraded into nutrient (phosphorus and nitrogen) removal. The upgrade of the plant comprised implementation of BIOFOR type nitrifying (NP) and post-denitrifying (DN) biofilters downstream of the AS stage. Phosphorus removal was obtained by chemical precipitation that can be done at five different points for feeding ferric-sulfate (Fe2(SO4)3). Partial flow recirculation was administered from the nitrifying BIOFOR unit ahead of the AS basin for pre-denitrification utilizing raw wastewater as carbon source. The plant performance was monitored since the test operation period for 25 months. Experience revealed that significant nitrification occurs in the high-load activated sludge basin originally designed for carbon removal. During the summer period (characterized by temperature of 20-25 degrees C) about 37-42% ammonium conversion rate was observed in the reactor. The decreasing temperature in the wintertime resulted in lower nitrification rates, of about 6-10%. The combined activated sludge-biofiltration process proved its viability in the removal of organic matter, nitrogen and phosphorus. In this special configuration the AS system plays a key role in the nitrogen and organic matter removal.  相似文献   

11.
There is a need to develop effective stormwater filters for passive (without any addition of chemicals or energy) and effective removal of pathogens in order to mainstream stormwater harvesting. This study focuses on the development of coated granular activated carbon (GAC) filtration material in order to develop filters for effective removal of pathogens from urban stormwater. Several laboratory trials were performed to gauge the effectiveness of the filters, which use a mixture of the zinc-sulphate-heptahydrate coated GAC and sand, on the removal of Escherichia coli (E. coli) from semi-natural stormwater. On average, a 98% removal of the inflow concentration of E. coli was achieved. Furthermore, there was also an improvement of approximately 25% in the removal of phosphorous. However, it was found that the treated material was leaching zinc. It was important to determine whether the observed removal of E. coli was indirectly caused by the sampling methodology. The results showed that the inactivation of the E. coli in the collected sample was small compared with the inactivation which actually occurred within the filter. This provides much promise to the filter, but the presence of zinc in the outflow demonstrates the need for further investigation into the stabilisation of the coating process.  相似文献   

12.
A 104-mm (4-inch) diameter pilot-scale biological aerated filter (BAF) with a media depth of 2.5 m (8.3 feet) was operated with an anaerobic, anoxic and oxic zone at a temperature of 23 degrees C. The medium for the anaerobic and anoxic zones was 10 mm diameter sand while the medium for the oxic zone was 5 mm diameter sand. The influent sCOD and total nitrogen concentrations in the feedwater were approximately 250 mg/L and 35 mg N/L, respectively. sCOD removal at optimum hydraulic retention time (HRT) of 3 h with recirculation rates of 100, 200 and 300% in the column was above 96%. Nitrification was found to be more than 96% for 3 h HRT at 200 and 300% recirculation. Total nitrogen removal was consistent at more than 80% for 4 and 6 h HRT at 300% recirculation. For 3 h HRT and 300% recirculation, total nitrogen removal was approximately 79%. The ammonia loading rates for maximum ammonia removed were 0.15 and 0.19 kg NH3-N/m3-day for 100 and 200% recirculation, respectively. The experimental results demonstrated that the BAF can be operated at an HRT of 3h with 200-300% recirculation rates with more than 96% removal of sCOD and ammonia and at least 75% removal of total nitrogen.  相似文献   

13.
A shortage of organic substances (COD) may cause problems for biological nutrient removal, that is, lower influent COD concentration leads to lower nutrient removal rates. Biological phosphorus removal and denitrification are reactions in which COD is indispensable. As for biological simultaneous nitrogen and phosphorus removal systems, a competition problem of COD utilisation between polyphosphate accumulating organisms (PAOs) and non-polyphosphate-accumulating denitrifiers is not avoided. From the viewpoint of effective utilisation of limited influent COD, denitrifying phosphorus-removing organisms (DN-PAOs) can be effective. In this study, DN-PAOs activities in modified UCT (pre-denitrification process) and DEPHANOX (post-denitrification process) wastewater treatments were compared. In conclusion, the post-denitrification systems can use influent COD more effectively and have higher nutrient removal efficiencies than the conventional pre-denitrification systems.  相似文献   

14.
好氧缺氧一体化的高效分离生物流化复合反应器(HSBCR)是在内循环三相生物流化床的基础上发展起来的一种新型反应器.考察HSBCR在较短停留时间内处理生活污水时的脱碳、脱氮和除磷效果,结果表明:好氧区HRT为1.5 h时,COD_(Cr)、氨氮、总氮、总磷去除率分别为81%、51%、47%和50%;HRT为2.0 h时分别为84%、64%、54%和57%.HSBCR不仅能在短时间内使COD_(Cr)快速高效地去除,而且可以实现硝化与反硝化的一体化,满足脱氮除磷的要求,有望成为小城镇污水处理的适用技术.  相似文献   

15.
This paper assesses the nitrogen and phosphorus removal efficiency of seven plant species (Schoenoplectus lacustris, Vetiveria zizanioides, Acorus calamus, Canna indica, Zizania latifolia, Phragmites communis, and Iris pseudacorus) commonly used in constructed wetland systems in southern China. The investigation considers two aspects that are relevant to determine nutrient removal efficiency: plants' biomass production and nutrient content in water effluent. Both assessments are correlated with each other. Three different hydraulic retention times with different nutrient loads have been applied in this ex-situ trial. The plants' biomass production correlates positively with the effluent's nutrient removal efficiency. Six out of seven species reviewed produce more biomass above ground than below ground (average: 67% of dried biomass in aerial part); only I. pseudacorus produces more biomass below ground. S. lacustris, V. zizanioides, I. pseudacorus, and C. indica have performed best in terms of nutrient removal efficiency (65.6-90.2% for nitrogen; 67.7-84.6% for phosphorus).  相似文献   

16.
温度和基质对人工湿地脱氮除磷效果的影响   总被引:1,自引:0,他引:1  
构建由潜流人工湿地和表流人工湿地串联而成的复合人工湿地系统,研究了复合人工湿地脱氮除磷效果以及温度和基质对人工湿地脱氮除磷效果的影响。结果表明,复合人工湿地TP、氨氮平均去除率为33.64%、57.24%;水温降低会导致人工湿地氮磷去除率下降;基质为粗砂的潜流人工湿地脱氮除磷能力大于基质为砾石的潜流人工湿地。  相似文献   

17.
Improved urban water management in Australia is of national importance. Water resources are stretched and urban runoff is a recognized leading cause of degradation of urban waterways. Stormwater recycling is an option that can contribute to easing these problems. Biofilters are effective structural stormwater pollution control measures with the potential for integration into stormwater treatment and recycling systems. However, premature clogging of biofilters is a major problem, with resulting decreased infiltration capacity (and hence the volume of stormwater the system can detain) and increased detention time. This paper presents preliminary findings with respect to the effect of clogging on pollutant removal efficiency in conventional stormwater filter media. A one-dimensional laboratory rig was used to investigate the impact of clogging on pollutant removal efficiency in a conventional biofiltration filter media (gravel over sand). Both the individual gravel layer and the overall multi-filter were highly efficient at removing suspended solids and particulate-associated pollutants. This removal efficiency was consistent, even as the filters became clogged. Removal of dissolved nutrients was more variable, with little reduction in concentrations overall. Although preliminary, these results challenge the concept that increased detention time improves the treatment performance of stormwater filtration systems.  相似文献   

18.
There is a worldwide demand for decentralized wastewater treatment options. An on-site engineered ecosystem (EE) treatment plant was designed with a multistage approach for small wastewater generators in tropical areas. The array of treatment units included a septic tank, a submersed aerated filter, and a secondary decanter followed by three vegetated tanks containing aquatic macrophytes intercalated with one tank of algae. During 11 months of operation with a flow rate of 52 L h(-1), the system removed on average 93.2% and 92.9% of the chemical oxygen demand (COD) and volatile suspended solids (VSS) reaching final concentrations of 36.3 ± 12.7 and 13.7 ± 4.2 mg L(-1), respectively. Regarding ammonia-N (NH(4)-N) and total phosphorus (TP), the system removed on average 69.8% and 54.5% with final concentrations of 18.8 ± 9.3 and 14.0 ± 2.5 mg L(-1), respectively. The tanks with algae and macrophytes together contributed to the overall nutrient removal with 33.6% for NH(4)-N and 26.4% for TP. The final concentrations for all parameters except TP met the discharge threshold limits established by Brazilian and EU legislation. The EE was considered appropriate for the purpose for which it was created.  相似文献   

19.
Approximately 30% of Minnesota's residents rely on onsite technologies for their wastewater treatment. There is a growing need for 'alternative' technologies to aid in treatment for difficult sites and sensitive environmental areas. Recirculating sand filters (RSFs) have been used since the 1970s for small communities with flows > 20,000 L per day, but use for small flow application (< 5,000 L/d) has been growing due to its small land use requirement. A research site was developed in southern Minnesota in 1995 to test alternative technologies, including two RSFs. In addition, in 1998, two RSFs were added to existing residential soil treatment systems that were having problems because of inadequate separation and fill soil conditions. All RSFs in this study used 0.6 metres of coarse sand for treatment, were loaded at approximately 204 L per day per square metre (5 gallons per square foot per day) and a recirculation rate of 5:1. All RSFs have effectively reduced Biochemical Oxygen Demand (BOD5), Total Suspended Solids (TSS), Fecal Coliform (FC) and Nutrients (nitrogen and phosphorus). These systems are able to achieve secondary effluent treatment levels for BOD5 and TSS. The median FC reduction was 90% with a value of 5.7 E4 cfu/100 mL, indicating additional treatment is necessary to protect health and the environment. The RSFs consistently removed 25% or more total phosphorus (TP) and 40% or more total nitrogen (TN). The RSFs did not show significantly decreased performance during the winter months. Two of the RSFs receiving rather high strength domestic waste were able to reduce a greater percentage of total nitrogen, indicated that the addition of carbon from the high strength waste is a benefit resulting in greater TN removal.  相似文献   

20.
For membrane bioreactors (MBR) with enhanced nutrients removal, rather complex recirculation schemes based on the biological requirements are commonly recommended. The aim of this work was to evaluate other recirculation options. For a laboratory scale MBR, four different recirculation schemes were tested. The MBR was operated with COD degradation, nitrification, post-denitrification without carbon dosing and biological phosphorus removal. For all configurations, efficient COD, nitrogen and phosphorus removal could be achieved. There were no big differences in elimination efficiency between the configurations (COD elimination: 96.6-97.9%, nitrogen removal: 89.7-92.1% and phosphorus removal: 97.4-99.4%). Changes in the degradation, release and uptake rates were levelled out by the changes in contact time and biomass distribution. With relatively constant outflow concentrations, different configurations are still interesting with regard to oxygen consumption, simplicity of plant operation or support of certain degradation pathways such as biological phosphorus removal or denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号