首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HEC1A endometrial cancer cells express the wild-type form of the estrogen receptor (ER) and 17beta-estradiol (E2) induces proliferation of these cells. In contrast, tamoxifen only causes a minimal increase (<20%) in cell proliferation. In HEC1A cells transiently transfected with the C3-Luc plasmid derived from the complement C3 gene, both E2 and tamoxifen exhibited ER agonist activity and tamoxifen was also a partial antagonist for this response. The relative ER agonist/antagonist activities of E2, tamoxifen and ICI 182,780 were also investigated in HEC1A1 cells transiently transfected with two E2-responsive plasmids, pCATHD-CAT and pCKB-CAT which contain 5'-promoter inserts from the cathepsin D and creatine kinase B genes, respectively. The results showed that E2 and tamoxifen induced reporter gene activity in cells transiently transfected with both constructs. ICI 182,780 exhibited partial ER agonist activity only in cells transiently transfected with pCKB-CAT and antagonized E2-induced reporter gene activity using both the CKB- and CATHD-derived constructs. These results demonstrate that HEC1A endometrial cancer cells are E2-responsive and represent a useful cell culture model for understanding hormone/antihormone-induced endometrial cell responses.  相似文献   

2.
The expression and stability of the estrogen receptor (ER) is the result of a complex process that is modulated by estrogens and antiestrogens. Regulation of the steady-state ER mRNA and protein levels in breast cancer cells appears to be the result of either of two distinct regulatory mechanisms. Estrogen exposure causes a rapid down-regulation of the steady-state level of ER mRNA and protein in model I regulation, as exemplified by the MCF-7:WS8 cell line. Conversely, in model II regulation, as observed in the T47D:A18 cell line, estrogen exposure causes an increase in the steady-state ER mRNA level and a maintenance of the ER protein level. In both these cell lines, the nonsteroidal antiestrogen 4-hydroxytamoxifen has little effect on the mRNA level but causes a net accumulation of the ER protein over time. In contrast, the pure antiestrogen ICI 182,780 causes a dramatic reduction of the ER protein in both the MCF-7:WS8 and T47D:A18 cell lines. This loss has little effect upon the ER mRNA level in the MCF-7:WS8 cells but leads to a decline in the ER mRNA in the T47D:Al8 cells. The estrogen-independent MCF-7:2A cell line, which has adapted to growth in estrogen free media, expresses two forms of the ER, a wild-type Mr66,000 ER and a mutant Mr77,000 ER (ER77). ER77 is the product of a genomic rearrangement resulting in a tandem duplication of exons 6 and 7 (J. J. Pink et al, Nucleic Acids Res., 24:962-969,1996). This exon duplication has abolished ligand binding by this protein. Here we demonstrate that the loss of ligand binding has eliminated the effects of 4-OHT and ICI 182,780 on the steady-state ER77 protein level. However, in the MCF-7:2A cells, antiestrogens affect the wild-type ER protein in the same manner as observed in the MCF-7:WS8 and T47D:A18 cells. Estrogen regulates the ER mRNA and wild-type ER and ER77 proteins in the MCF-7:2A cells in the same manner as observed in the MCF-7:WS8 cells. Interestingly, treatment of the MCF-7:2A cells with ICI 182,780 causes a slight increase in ER mRNA, which is reflected in a net increase in the ER77 protein but a dramatic decrease in the wild-type ER. The models presented here describe the response of two human breast cancer cell lines in short-term studies. These distinct regulation pathways are predictive of the response of these cell lines to long-term estrogen deprivation. This study illustrates two alternative regulation pathways that are present in ER-positive, estrogen-dependent breast cancer cells. This variable response highlights the diversity of responses potentially present in the heterogeneous cell populations of clinically observed breast cancer.  相似文献   

3.
The purpose of the present studies was to investigate the role of epidermal growth factor (EGF) in the acquisition of estrogen (E) and progestin (P) responsiveness in the mouse mammary gland in vivo. Using the Elvax 40P implant technique to introduce bioactive molecules directly into the mammary gland to produce a localized effect, we have made the novel observation that EGF implanted into glands of pubertal mice followed by E treatment resulted in the precocious acquisition of E-inducible progesterone receptors (PR). In sexually mature mice, EGF implants alone were able to increase PR. A neutralizing antibody specific for EGF blocked E-dependent stimulation of end-bud development and PR induction. Furthermore, the antiestrogen ICI 182,780 blocked the EGF-induced stimulation end-buds and PR induction, indicating that these EGF effects are mediated via estrogen receptors (ER). Immunohistochemical analysis showed that the endogenous EGF content of mammary glands of mature mice was higher than pubertal mice, that E implants caused a localized increase in mammary gland EGF content in both pubertal and mature mice, and that in mature mice E caused an increase in stromal cell EGF content. We have previously shown that the acquisition of E-inducible PR can be modulated by mammary stroma, and the present results indicate that mammary stroma could modulate hormonal responsiveness through control of local growth factor concentration. Taken together, these results provide evidence that E-dependent responses of mouse mammary gland in vivo, such as end-bud proliferation and PR regulation, may be mediated by EGF through an ER-dependent mechanism.  相似文献   

4.
Preliminary studies have suggested that measuring the ability of immunoreactive 67-kDa estrogen receptor (ER) to bind DNA and form in vitro complexes with its cognate estrogen response element (ERE) might serve to identify breast tumors most likely to respond to antiestrogens like tamoxifen. Data from two different surveys of untreated primary breast tumors confirmed that only 67% (74 of 111) of ER-positive tumors express a receptor capable of forming ER-ERE complexes by gel-shift assay, with tumors of lower ER content having significantly reduced ER DNA-binding frequency (56%) relative to those of higher ER content (82%; P = 0.007). In contrast to these untreated tumors, a panel of 41 receptor-positive breast tumors excised after acquiring clinical resistance to tamoxifen during either primary (n = 26) or adjuvant therapy (n = 15) showed a significantly greater ER DNA-binding frequency, with nearly 90% capable of forming ER-ERE complexes (P < 0.02). To assess experimentally whether ER DNA-binding function is altered during the development of antiestrogen resistance, nude mouse MCF-7 tumor xenografts were analyzed before and after the acquisition of in vivo resistance to either tamoxifen or a pure steroidal antiestrogen, ICI 182,780. Tamoxifen-resistant MCF-7 tumors retained full expression of 67-kDa DNA-binding ER, and despite a markedly reduced ER content in the ICI 182,780-treated tumors, the expressed ER in these antiestrogen-resistant tumors exhibited full ability to form ER-ERE complexes. These findings indicate that breast tumors with acquired antiestrogen resistance continue to express ER of normal size and DNA-binding ability and suggest that the failure of antiestrogens to arrest tumor growth during emergence of clinical resistance results from an altered gene-regulatory mechanism(s) other than ER-ERE complex formation.  相似文献   

5.
6.
The estrogen receptor (ER) mixed agonists tamoxifen and raloxifene have been shown to protect against bone loss in ovariectomized rats. However, the mechanism by which these compounds manifest their activity in bone is unknown. We have used a series of in vitro screens to select for compounds that are mechanistically distinct from tamoxifen and raloxifene in an effort to define the properties of an ER modulator required for bone protection. Using this approach, we identified a novel high affinity ER antagonist, GW5638, which when assayed in vitro functions as an ER antagonist, inhibiting the agonist activity of estrogen, tamoxifen, and raloxifene and reversing the "inverse agonist" activity of the pure antiestrogen ICI182,780. Thus, GW5638 appears to function as an antagonist in these in vitro systems, although in a manner distinct from other known ER modulators. Predictably, therefore, GW5638 alone displays minimal uterotropic activity in ovariectomized rats, but will inhibit the agonist activity of estradiol in this environment. Unexpectedly, however, this compound functions as a full ER agonist in bone and the cardiovascular system. These data suggest that the mechanism by which ER operates in different cells is not identical, and that classical agonist activity is not required for the bone protective activity of ER modulators.  相似文献   

7.
8.
9.
Diethylstilbestrol (DES) is a well-characterized carcinogen in humans and animals although its mechanisms of carcinogenicity are not yet known. While the estrogenic activity of DES is important, there is evidence that oxidative metabolism also plays an important role for its toxicity. DES is oxidatively metabolized in vivo and in vitro to a number of compounds including diethylstilbestrol-4',4"-quinone (DQ), an unstable and reactive intermediate, and Z,Z-dienestrol (ZZ-DIEN). Estrogen receptor (ER) binding assays with mouse uterine cytosol indicate that DES, DQ and ZZ-DIEN have relative binding affinities of 286, 3.6 and 0.3, respectively, relative to estradiol as 100. In addition, DQ binds irreversibly and specifically to ER suggesting that DQ may be biologically active despite its rapid metabolism and lower binding affinity compared to DES. To test this, COS-1 cells were transfected with an estrogen responsive reporter construct containing of VitA2 estrogen response element (ERE) with or without an ER expression vector. In the presence of ER, treatments with DES, DQ and ZZ-DIEN resulted in 11, 10, and 2-fold induction of chloramphenicol acetyltransferase (CAT) activity, respectively. This induction was mediated by estrogen receptor since it was suppressed by pretreatment with a 10-fold excess of the pure antiestrogen ICI 182,780. These data indicate that DQ is a biologically active intermediate that is capable of transactivation of estrogen responsive genes through the ER. Furthermore, the data suggest that the ability of DQ to irreversibly bind ER may result in persistent stimulation of ER. This persistent stimulation may be related to the carcinogenicity of DES.  相似文献   

10.
11.
The effects of large doses of estrogen on prolactin (PRL) release were assessed. Circulating PRL levels in response to intravenous infusion of 17 beta-estradiol (E2), at a rate of 50 mug per hour for 4 hours, were studied in 10 subjects, and a chronic administration of ethinyl estradiol (EE) at a dose of 400 mug per day, for 1 week, was evaluated in five hypogonadal subjects. There was a significant depression of serum level of PRL during the E2 infusion and a significant increase in PRL release after discontinuation of the infusion. The chronic treatment of large doses of EE induced a more rapid (within 36 hours) and a significantly greater elevation of PRL levels at the end of 1 week treatment than those found during smaller doses of EE administration, as reported previously. These data suggest that acute treatment of estrogen may have a biphasic action on the pituitary PRL section and that the augmentatory effect of estrogen on PRL secretion is dose-dependent in human beings.  相似文献   

12.
Estrogen treatment affects the hepatic synthesis and/or secretion of several proteins involved in clinically important pathological processes such as atherosclerosis, hypertension, and thrombosis. The endocrine regulation of the estrogen receptor (ER) concentration in primary cultures of rat hepatocytes was studied. Human growth hormone (hGH) and dexamethasone (DEX) in combination increased ER concentration 6-fold and ER mRNA levels 2.5-fold. These effects were not significantly different from those observed after treatment with the purely somatogenic bovine growth hormone (GH) in combination with DEX. Treatment with the lactogen ovine prolactin in the presence or absence of DEX did not significantly affect ER or ER mRNA concentrations. Triiodothyronine treatment at the most effective concentration (50 nM) increased ER and ER mRNA levels twofold. Medium supplementation with estradiol (0.1 nM) throughout the experiment did not affect the response to treatment with hGH and DEX. Treatment with high concentrations of ethinylestradiol in combination with hGH and DEX, however, increased the ER level twice as much as hGH and DEX without addition of estradiol or ethinylestradiol, whereas the ER mRNA concentration was the same in both the GH+DEX group and GH+ DEX+ (estradiol or ethinylestradiol) groups. These data indicate the importance of GH in combination with glucocorticoids for the maintenance of ER concentrations in the rat liver. Thyroid hormones may be of some, although minor importance, whereas the data suggest that prolactin is not directly involved in hepatic ER regulation.  相似文献   

13.
Adenosine deaminase (ADA) gene expression is induced by 17beta-estradiol (E2) in MCF-7 human breast cancer cells, whereas the antiestrogens 4'-hydroxytamoxifen and ICI 182,780 exhibit partial estrogen receptor (ER) agonist/antagonist and antagonist activities, respectively. Previous studies have shown that the -211 to +11 region of the ADA gene promoter contains six GC-rich sites (I-VI) that bind Sp1 protein, and these elements are required for high basal expression. In transient transfection studies with pADA211, which contains the -211 to +11 ADA gene promoter linked to a bacterial chloramphenicol acetyl transferase (CAT) reporter gene, E2 and tamoxifen (but not ICI 182,780) induced CAT activity. Ligand-induced transactivation was observed only in cells cotransfected with expression plasmids for wild-type ER or HE11, which does not contain the DNA-binding domain of the ER. Cotransfection with HE15 and HE19, which contain the DNA-binding domain and activation function-1 (AF-1) and AF-2 of the ER, respectively, did not result in E2-induced activity. Subsequent deletion analysis of the ADA gene promoter showed that Sp1 binding site IV (-79 to -73) was primarily responsible for hormone responsiveness. ER activation of ADA gene expression is another example of an E2-induced gene that is dependent on ER/Sp1 interactions with a site-specific GC-rich motif.  相似文献   

14.
Many xenobiotics are considered reproductive toxins because of their ability to interact with the nuclear estrogen receptors (ERalpha and ERbeta). However, there is evidence that these xenobiotics can regulate gene expression in the reproductive targets by mechanisms that do not involve these ERs. To examine this further, we compared the effects of estrogenic (o,p'-DDT [1-(o-chlorophenyl)-1-(p-chlorophenyl)2,2,2-trichloroethane] and Kepone, chlordecone) and nonestrogenic (p,p'-DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)ethane], a metabolite of p,p'-DDT) xenobiotics with those of 17beta-estradiol (E2) and 4-hydroxyestradiol-17beta (4-OH-E2), a catechol metabolite of E2, on uterine expression of lactoferrin (LF) and progesterone receptor (PR). These genes are estrogen responsive in the mouse uterus. Normally, LF is expressed in the uterine epithelium, whereas PR is expressed in both the epithelium and stroma in response to estrogenic stimulation. Ovariectomized mice were injected with xenobiotics (7.5 mg/kg), E2 (10 microg/kg), 4-OH-E2 (10 microg/kg), or the vehicle (oil, 0.1 ml/mouse), and uterine tissues were processed for Northern blot and in situ hybridization. The pure antiestrogen ICI-182780 (ICI; 1 or 20 mg/kg) was used to interfere with estrogenic responses that were associated with the ERs. The results of Northern and in situ hybridization demonstrated increased uterine levels of PR and LF messenger RNAs (mRNAs) by all of these xenobiotics, but quantitatively the responses were much lower than those induced by E2 or 4-OH-E2. The results further showed that the E2-inducible epithelial LF mRNA accumulation was markedly abrogated by pretreatment with ICI (20 mg/kg). In contrast, this treatment retained the epithelial expression of PR mRNA, but down-regulated the stromal expression. In contrast, ICI had negligible effects on LF and PR mRNA responses to 4-OH-E2, indicating that this catechol estrogen exerted its effects primarily via a mechanism(s) other than the ERs. The heightened accumulation of LF mRNA in the epithelium in response to Kepone and o,p'-DDT was also severely compromised by pretreatment with ICI, but this antiestrogen had little effect on responses to p,p'-DDD. Similar to E2, Kepone increased the expression of PR mRNA in both uterine epithelium and stroma. However, pretreatment with ICI decreased stromal cell expression, whereas epithelial cell expression remained unaltered or increased. These responses were not noted in mice treated with o,p'-DDT or p,p'-DDD. Collectively, the results demonstrate that catechol estrogens or xenobiotics can alter uterine expression of estrogen-responsive genes by mechanisms that are not totally mediated by the classical nuclear ERs, and these alterations are cell type specific. We conclude that an interaction of a compound with the nuclear ERalpha and/or ERbeta is not an absolute requirement for producing specific estrogen-like effects in the reproductive target tissues.  相似文献   

15.
The antiestrogen tamoxifen [(Z)-1(p-beta-dimethylamino-ethoxyphenyl)-1,2- diphenylbut-1-ene] is an effective anticancer agent for the treatment of hormone responsive breast cancer. Previous studies have demonstrated that a point mutation in the estrogen receptor (ER) resulted in an alteration of the pharmacology of 4-hydroxytamoxifen, the active metabolite of tamoxifen (Jiang et al, Mol Endocrinol 6:2167-2174, 1992). We have extended our studies to evaluate the effect of a point mutation, a Val substitution for Gly at amino acid 400 in the ligand binding domain of ER, on the pharmacology of other antiestrogens in ER stable transfectants derived from the ER-negative breast cancer cell line MDA-MB-231 CL10A. The compounds were tested with or without estradiol-17 beta (E2) for their effects on cell growth in cells expressing the wild type ER (S30) or the mutant ER (ML alpha 2H) or in control antisense ER transfectant AS23 which does not express ER protein. MCF-7 cells, which express the wild type ER, were also used as a control. The growth of AS23 cells was not affected by any of the compounds at a concentration of 1 microM. E2 stimulated the growth of MCF-7 cells but inhibited the growth of ER transfectants S30 and ML alpha 2H. The ML alpha 2H cells were about 10 to 100-fold less sensitive to E2 and antiestrogens than S30 and MCF-7 cells. Keoxifene, an antiestrogen with a high affinity for the ER, maintained antiestrogenic activities in both ER transfectants and MCF-7 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
OBJECTIVES: The Ishikawa endometrial cancer cell line is hormonally responsive, expressing estrogen and progesterone receptors (ER, PR) when grown in traditional monolayer culture. The purpose of this paper is to demonstrate a three-dimensional spheroid culture system for cancer cells. We used this system to determine the response of the Ishikawa cell line to estradiol-17 beta (E), tamoxifen (T), megestrol acetate (MA), and progesterone (P). METHODS: Ishikawa cells were incubated in polyurethane culture bags using phenol red-free media containing ethanol (0.1%, controls), E (1 mumol, or 1 nmol), T (1 mumol, or 10 nmol), MA (1 mumol, or 10 nmol), or P (1 mumol). Cellular morphology was assessed by hematoxylin and eosin staining, and expression of estrogen and progesterone receptors was determined immunohistochemically using an immunoperoxidase technique. RESULTS: Cells in control cultures demonstrated minimal organization and lacked hormone receptors. In contrast, cells exposed to either E or T displayed significant glandular formation, with multicellular, microvilli-rich, columnar epithelia exhibiting polarized nuclear arrangements. Within 4 weeks, E- and T-treated cultures showed upregulated nuclear staining for PR, with little ER present. Cells treated with MA or P showed less glandular organization but expressed ER with PR downregulation. CONCLUSIONS: These data support the use of this novel three-dimensional culture system to study the modulation of tumor cell biologic activity in response to hormonal agents. Future applications of this model include examining in vitro responsiveness of cancer cell lines to additional biologic agents and chemotherapeutic regimens.  相似文献   

18.
Estrogen treatment of immature or ovariectomized mature rats induces an increase in uterine cGMP content, with a peak 2-3 h after hormone administration. This response to estrogenic action also develops in vitro, in incubated uterine horns, thus excluding the intervention of another organ. Its function is still unknown. We show here that treatment of incubated uterine horns from immature or mature rats with 8 nM epidermal growth factor (EGF), exactly mimicked the effect of 1 nM estradiol on cGMP levels. The estradiol-induced increase in uterine cGMP was canceled in the presence of the phosphotyrosine kinase inhibitor genistein. Like the cGMP response to EGF, the estradiol-induced increase in uterine cGMP was completely suppressed in the presence of an antimouse EGF antibody. On the other hand, whereas the induction of cGMP accumulation by estradiol in vivo or in vitro was suppressed by prior treatment of the animals with the pure antiestrogen ICI 164,384, such pretreatment had no effect on the EGF-induced increase in uterine cGMP content. Together, these data support the concept that the uterine cGMP response to estrogens is entirely due to auto/paracrine mediation by the EGF-EGF receptor system. Considering reports from the literature showing that EGF can directly induce the phosphorylated active form of the estrogen receptor, we speculate that this might implicate its action on cGMP, with the latter then intervening as cofactor of the involved phosphokinase(s).  相似文献   

19.
Tamoxifen (TAM), the only antiestrogen currently available for the endocrine therapy of breast cancer behaves as a mixed agonist/antagonist of estrogen action, thus limiting its therapeutic potential. We report the binding characteristics of a novel series of nonsteroidal antiestrogens to the rat uterine estrogen receptor. As measured by competition studies, the affinity of EM-652, the active metabolite of the prodrug EM-800, for the estrogen receptor is 7-11 times higher than that of 17beta-estradiol (E2), ICI 182780, and hydroxy-tamoxifen (OH-TAM), the active metabolite of Tamoxifen. EM-652 is 20x more potent than ICI 164384 and Droloxifene while it is 400 times more potent than Toremifene in displacing [3H]E2 from the rat uterine estrogen receptor. On the other hand, the prodrug EM-800 and Tamoxifen have respectively 150-fold and 410-fold less affinity for the estrogen receptor than the pure antiestrogen EM-652. No significant binding of EM-652, EM-800, TAM or OH-TAM was observed to the rat uterine progesterone receptor at concentrations up to 10,000 nM except for TAM that caused a 50% displacement of labeled R5020 at 4000 nM. No significant binding of EM-652 or EM-800 was observed on the rat ventral prostate androgen receptor or the rat uterine progesterone receptor. The present data demonstrate the high affinity and specificity of the new antiestrogen, EM-652, for the rat uterine estrogen receptor. The antiestrogen EM-652 thus becomes the compound having the highest known affinity for the estrogen receptor. Due to its unique potency and its pure antiestrogenic activity already demonstrated in many systems, this antiestrogen could well offer an important advance for the endocrine therapy of breast cancer, uterine cancer, and other estrogen-sensitive diseases in women.  相似文献   

20.
The ontogenic expression of progesterone and estrogen receptors (PR and ER) and effect of estrogen on these receptors were investigated immunohistochemically in rat uterus from the day of birth ( = 0 day) to 30 days of age. Uterine epithelial and stromal cells showed a negative PR immunoreaction at 0 day. The PR in the epithelial cell nuclei appeared by 5 days, while the stromal cells showed a negative PR reaction until 12 days. The staining of the stromal cells appeared from 12 to 15 days. In both the epithelial and stromal cells, the initiation of the PR appearance was not affected by ovariectomy performed at 0 day or 5 days prior to the appearance of PR in the epithelial and stromal cells. Estrogen injections from 0 day failed to initiate the appearance of PR in the epithelial cells, regardless of doses of estradiol-17 beta (0.1, 1 and 10 micrograms daily), but induced PR in the stromal cells. The staining of ER appeared at 5 days in the epithelial cells and at 1 day in the stromal cells, respectively. ER appeared after 2-3 daily injections of estrogen from 0 day depending upon the doses. These results suggest that steroid hormones secreted from neonatal ovary do not play any important role in ontogenic expression of PR during the postnatal uterine maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号