首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A modified AA5083 aluminum sheet material containing a Cu addition of 0.61 wt pct has been investigated under conditions relevant to commercial hot-forming technologies. This material was produced by continuous casting followed by industrial hot and cold rolling into sheet. Deformation and failure mechanisms at elevated temperatures were investigated through mechanical testing, thermal analysis, and microscopy. The effects of Cu addition are evaluated by comparisons with data from AA5083 sheet materials without Cu addition, produced both by continuous and direct-chill (DC) casting techniques. At low temperatures and fast strain rates, for which solute-drag (SD) creep governs deformation, the Cu addition slightly increases tensile ductility at 450 °C but does not otherwise alter deformation behaviors. At high temperatures and slow strain rates, for which grainboundary-sliding (GBS) creep governs deformation, the Cu addition decreases flow stress and, at 450 °C, improves tensile ductility. A strong temperature dependence for tensile ductility results from the Cu addition; tensile ductility at 500 °C is notably reduced from that at 450 °C. The Cu addition creates platelike particles at grain boundaries, which produce incipient melting and the observed mechanical behavior.  相似文献   

2.
Thermally induced strains and stresses developed during direct-chill (DC) semicontinuous casting of high strength aluminum alloys can result in formation of micro-cracks in different locations of the billet. Rapid propagation of such micro-cracks in tensile thermal stress fields can lead to catastrophic failure of ingots in the solid state called cold cracking. Numerical models can simulate the thermomechanical behavior of an ingot during casting and after solidification and reveal the critical cooling conditions that result in catastrophic failure, provided that the constitutive parameters of the material represent genuine as-cast properties. Application of fracture mechanics, on the other hand, can help to derive the critical crack length leading to failure. In the present research work, the state of residual thermal stresses was determined in an AA7050 billet during DC casting by means of ALSIM5. Simulation results showed that in the steady-state conditions, large compressive stresses form near the surface of the billet in the circumferential direction, whereas in the center, the stresses are tensile in all directions. Magnitudes of von Mises effective stresses, the largest component of principal stresses and the fracture mechanics concepts, were then applied to investigate the crack susceptibility of the billet.  相似文献   

3.
Gao  X.  Li  H. X.  Han  L.  Santillana  B.  Ruvalcaba  D.  Zhuang  L. Z. 《Metallurgical and Materials Transactions A》2018,49(10):4633-4648

An appropriate experimental scheme and an accurate constitutive model are the two key factors that determine the success or failure of the constitutive equations used to simulate hot deformation behavior during the continuous casting process. In this study, according to the characteristics of the thin-slab continuous casting process, the experimental scheme on hot tensile tests is designed and validated by the analysis of fracture surfaces. Isothermal hot tensile tests were performed on a Gleeble 1500 thermomechanical simulator at four different temperatures (1173 K, 1273 K, 1373 K, and 1473 K) and four different strain rates (10−3, 10−2, 10−1, and 1 s−1). Based on the flow stress obtained from the tensile tests, the Arrhenius-type constitutive equation was established. It is shown that the simulation results are in good agreement with the experimental data. To further understand the constitutive behavior, activation energy maps were also developed in this study. Through a brief analysis of the activation energy map, directions for future work were surmised.

  相似文献   

4.
Hot deformation of AA6082 aluminum alloy was studied by compression tests carried out between 573 K and 823 K (300 °C and 550 °C) under a wide range of strain rates. Light optical and scanning electron microscopy were used to study the as-received microstructure, which consisted of elongated, partially recrystallized grains containing fine Mg2Si and AlFeMnSi particles. The hot-deformed material showed the effects of dynamic recovery, i.e., small low angle grain boundary formation and dislocation pinning by fine particles. The flow data were used to calculate the constitutive equations, obtaining high values of n exponent. This behavior was attributed to the interaction of particles with dislocations during hot deformation. Threshold stresses were introduced to adjust the constitutive equation to a n exponent value of 5 at high stresses and a value of 3 in the low stresses range, which was related to dislocations’ climbing and sliding and thus to dynamic recovery. The threshold values were related to the detachment stresses in close connection with the precipitation state which was a function of the deformation temperature.  相似文献   

5.
The current study proposes a simple constitutive model that integrates the kinetics of precipitation during static aging and the kinetics of precipitate dissolution during preheating to deformation temperature to predict the hot flow behavior of AA6063 alloy. The model relates the flow behavior of the age-hardenable alloy to the alloy chemistry, thermal history as well as deformation temperature, strain, and strain rate by means of a physically based model. Different aging conditions, including supersaturated solid solution and overaging conditions with different deformation parameters, were assessed. Each part of the model was in good agreement with those of experimental and other model results published in the literature.  相似文献   

6.

Recovery behavior (recovery) and strain-rate dependence of the stress–strain curve (strain-rate dependence) are incorporated into constitutive equations of alloys to predict residual stress and thermal stress during casting. Nevertheless, few studies have systematically investigated the effects of these metallurgical phenomena on the prediction accuracy of thermal stress in a casting. This study compares the thermal stress analysis results with in situ thermal stress measurement results of an Al-Si-Cu specimen during casting. The results underscore the importance for the alloy constitutive equation of incorporating strain-rate dependence to predict thermal stress that develops at high temperatures where the alloy shows strong strain-rate dependence of the stress–strain curve. However, the prediction accuracy of the thermal stress developed at low temperatures did not improve by considering the strain-rate dependence. Incorporating recovery into the constitutive equation improved the accuracy of the simulated thermal stress at low temperatures. Results of comparison implied that the constitutive equation should include strain-rate dependence to simulate defects that develop from thermal stress at high temperatures, such as hot tearing and hot cracking. Recovery should be incorporated into the alloy constitutive equation to predict the casting residual stress and deformation caused by the thermal stress developed mainly in the low temperature range.

  相似文献   

7.
This work investigates the mechanical behavior of two aluminum alloys in the mushy state, the alloy AA6056 and an alloy based on mixing AA6056 and AA4047. These alloys have been studied to give insight into the susceptibility to hot tearing, which occurs during laser welding of AA6056 with 4047 filler wire. Two types of isothermal tensile tests have been conducted: (1) tests during partial remelting and (2) tests after partial solidification at a high cooling rate. Results show that the maximum tensile stress increases with increasing solid volume fraction. Both materials exhibit visco-plastic behavior for solid fractions in the range 0.9 to 0.99, except for a critical solid fraction of 0.97, where the semisolid material also shows minimum ductility. The stress levels observed for the remelting experiments are larger than those found for partial solidification experiments at the same solid fraction due to the influence of the microstructure. The influence of temperature and strain rate on the maximum stress is described by using a constitutive law that takes into account the fraction of grain boundaries wetted by the liquid.  相似文献   

8.
An in-situ neutron diffraction technique was used to investigate the lattice strain distributions and micromechanical behavior in a friction stir welded (FSW) sheet of AA7475-T761. The neutron diffraction experiments were performed on the spectrometer for material research, STRESS-SPEC, at FRM II (Garching, Germany). The lattice strain profiles around the weld center were measured as a function of the applied strain during the tensile loading and unloading. The anisotropic elastic and plastic properties of the FSW aluminum alloy were simulated by elasto-plastic self-consistent (EPSC) model to predict the anisotropic deformation behaviors involving the grain-to-grain interactions. Material parameters used for describing the constitutive laws of each test position were determined from the measured lattice strain distributions for different diffraction hkl planes as well as the macroscopic stress-strain curve of the FSW aluminum alloy. A good agreement between experimental results and numerical simulations was obtained. The present investigations provided a reliable prediction of the anisotropic micromechanical behavior of the FSW aluminum alloy during tensile deformation.  相似文献   

9.
The stress-strain behavior of aluminum 3–9 purity deformed at elevated temperatures has been analyzed on a rational basis. Emphasis has been given to the analysis of the curves corresponding to typical deformation conditions of interest for hot rolling of commercial aluminum alloys. The strainhardening behavior has been modeled assuming the validity of the typical saturation exponential equation earlier proposed by Voce. The temperature and strain dependence of the flow stress parameters involved in such an equation has been introduced by means of a model based on the power law relationship, where the stress-sensitivity exponent of the strain rate is considered to be temperature dependent. The strong temperature dependence of this parameter precluded the use of the exponential relationship expressed in terms of the Zener-Hollomon parameter. Therefore, a different temperature-compensated strain rate parameter similar to the MacGregor-Fisher parameter has been employed following the earlier developments put forward by Kocks. Thus, a satisfactory correlation of the flow stress parameters with the deformation conditions has been obtained. The final constitutive equation derived provides a satisfactory reproduction of the experimental values of the flow stress and follows quite closely the strain-hardening behavior. The mean activation energy determined by the different models confirmed the predominance of both climb of edge dislocation segments and motion of jogged screw dislocations as the rate-controlling mechanisms during deformation of this material under hot-working conditions. The use of a constitutive equation which expresses the flow stress of the material in terms of the applied strain, rate of straining, and deformation temperature to calculate the power dissipation efficiency of the material(η) deformed under hot-rolling conditions has shown that it could be strongly strain dependent, particularly toward the end of the rolling schedule. Hence, it has been concluded that the calculation of both the power co-content as defined in dynamic material modeling (DMM) and its maximum value, taking into consideration the constitutive equation previously developed, represents a more plausible and soundly based approach toward the determination of η.  相似文献   

10.
A set of constitutive equations is presented to describe the history dependent plastic deformation behavior of anisotropic metals under multiaxial loading conditions. The primary variables that characterize the material behavior with increasing deformation are the effective flow strength,k; the residual or back stress vectorα i ; and the anisotropy matrix,M tj . The strain rate is given in terms of an equivalent plastic strain rate, the gradient of a plastic potential, which incorporates key material variables and the stress state. All the material parameters have been determined for a recrystallized Zircaloy-2 from 25 to 450 °C and a solution treated 304 stainless steel from 25 to 650 °C based on experiments that included monotonic, load reversal, and load relaxation tests. The analytical model has been used to simulate the deformation behavior of both metals under a variety of testing conditions, including cyclic and plane strain loading conditions. The general form of the constitutive relation is shown to be consistent with experimental data obtained for various material orientations under different loading conditions.  相似文献   

11.
通过高温压缩试验研究齿轮钢SAE8620H在950~1100℃、应变速率0.01~10 s-1条件下的高温变形行为.该合金钢的流动应力符合稳态流变特征,流变应力随变形温度升高以及应变速率降低而减小,其本构方程可以采用双曲正弦方程来描述.基于峰值应力、应变速率和温度相关数据推导出SAE8620H高温变形激活能Q=280359.9 J·mol-1.根据变形量40%和60%下应力构建该齿轮钢的热加工图,通过热加工图中耗散值及流变失稳区确定其热变形工艺参数范围.SAE8620H钢在在变形程度较小时宜选取低的应变速率进行成形,而在变形程度大时则要选取低温低应变速率或者高温高应变速率.   相似文献   

12.
The two-phase mass and momentum conservation equations governing shrinkage-driven melt flow and thermally induced deformation are formulated for the aluminum direct chill (DC) casting process. Two main mechanisms associated with hot tearing formation during solidification and subsequent cooling are thus addressed simultaneously in the same mathematical model. The approach unifies the two-phase mushy zone model outlined by Farup and Mo, the constitutive relations that treat the mushy zone as a viscoplastic porous medium saturated with liquid outlined by Martin et al., and the “classical” mechanics approach to thermally induced deformations in solid (one-phase) materials using the linear kinematics approximation. A temperature field and a unique solidification path are considered as input to the model. The governing equations are solved for a one-dimensional (1-D) situation with some relevance to the DC casting process. The importance of taking into account the transfer of momentum from the liquid phase to the solid phase is then demonstrated through modeling examples. Furthermore, the modeling results indicate that the constitutive law governing the viscoplastic behavior of the solid skeleton of the mushy zone should take into account that the solid skeleton can be compressed/dilated as well as stress space anisotropy. Calculated peak values for liquid pressure and solid stress turn out to correlate to the hot tearing susceptibility measured in casting trials in the sense that trials having the largest cracks are those for which the highest pressures and stresses are computed.  相似文献   

13.
14.
The as-received direct-chill-cast (DC) and continuous-cast (CC) AA5052 and AA5182 hot bands were preheated at 454 °C for 4 hours, followed by cold rolling to an 80 pct reduction in thickness. The texture evolution of these cold-rolled samples during isothermal annealing was investigated by X-ray diffraction. The variation in texture volume fractions with annealing time was quantitatively analyzed by using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. The differences in recrystallization textures between the AA5052 and AA5182 alloys and between the DC and CC alloys were compared. It was found that the AA5052 alloy possessed a stronger cube recrystallization texture than the AA5182 alloy for the DC and CC materials. The recrystallization textures of the AA5182 alloy were affected strongly by the annealing temperature. As the annealing temperature increased, the cube recrystallization texture strengthened, whereas the R texture weakened. The annealing temperature had little influence on the recrystallization textures of the AA5052 alloy. The DC AA5052 and 5182 alloys also exhibited stronger cube recrystallization textures than the corresponding CC alloys. For the DC and CC AA5052 alloys, the n value in the JMAK-type equation increased with an increase in the annealing temperature, while the n values varied only slightly with the annealing temperature for the DC and CC AA5182 alloys.  相似文献   

15.
 Based on dislocation reaction theory and Avrami equation, a constitutive equation model was developed to describe dynamic recovery and dynamic recrystallization during hot deformation of T122 heat resistant steel, which have taken the effect of dynamic strain aging into account. Uniaxial hot compression test had been carried out over a wide range of strain rate (001 to 10 s-1) and temperature (900 to 1200 ℃) with the help of Gleeble 3500. Obtained experimental data was applied to determine the material parameters in proposed constitutive equations of T122 steel, by using the non-linear least square regress optimization method. The calculated constitutive equations are quantitatively in good agreement with experimentally measured curves and microstructure observation. It shows that propose constitutive equation T122 steel is able to be used to predict flow stress of T122 steel during hot deformation in austenite temperature scope.  相似文献   

16.
Theoretical investigation of influence of degree of deformation, slenderness ratio of a billet and shape of anvils upon distribution of stress and strain in upset forged material are presented in this paper. The deformation of a material was determined by the variational method and the stress field was determined from equations of equilibrium. Results of calculations indicate that formation of tensile stress in layers of a material at the free surface is connected with surface convexity. Factors which cause the increase of barrelling are also responsible for an increase of tensile stresses at the free surface of upset forged material.  相似文献   

17.
气隙对连铸坯应力分布影响的有限元数值模拟   总被引:2,自引:0,他引:2  
王恩刚  赫冀成  杨泽宽  陈海耿 《钢铁》1999,34(7):25-27,45
建立了结晶器内连铸坯热弹塑性应力有限元数学模型。在热弹塑性本构方程中考虑了材料力学性能、屈服函数随温度和应变速率的变化。着重研究了气隙对坯壳应力分布的影响。研究结果表明:当坯壳角部有明显的气隙形成时,铸坯偏角区成为热节区。在此热节区内,坯壳受到拉应力的作用,连铸坯有产生皮下裂纹的可能  相似文献   

18.
This study simulates the sintering behavior of powder-injection-molded 17-4 PH stainless steel to predict the geometry of the sintered components. Sintering is considered as the viscous deformation process of a porous body under the influence of sintering stress. Consequently, modified constitutive equations applicable to linear viscous, compressible material, based on a continuum-mechanics approach, were utilized in simulating the sintering kinetics, with grain-boundary diffusion as the dominant densification mechanism. Quenching and other experiments were conducted to quantify the densification and grain-growth behavior of the powder-injection-molded 17-4 PH samples during sintering, to determine the material parameters required for the constitutive model. The predictive capability of the model was verified by comparing the theoretical calculations with the experimentally observed variation in sintering shrinkage of the samples determined by dilatometry. The predictions underestimate shrinkage above 700 °C, a factor related to the volume change from the phase transformations observed during the sintering.  相似文献   

19.
 Modified CNS-Ⅱ F/M steel was designed for in-core components of supercritical water cooled reactor. Study on the hot deformation behavior of modified CNS-Ⅱ F/M steel is of great importance for processing parameter planning and microstructure controlling during hot deformation. The hot deformation behavior of modified CNS-Ⅱ F/M steel was investigated through isothermal hot compression test at temperature ranging from 1223 to 1373 K and strain rate 001 to 10 s-1. The true stress-true strain data gained from compression tests were used to built constitutive equation of modified CNS-Ⅱ F/M steel. The influence of strain on the accuracy of constitutive analysis was incorporated, assuming strain has a influence on material constants. A 5th order polynominal equation with very good accuracy was used to represent the influence of strain on material constant. The flow stresses calculated from the constitutive equation were compared with test values in the whole experiment range and the absolute average error for the constitutive equation in predicting flow stress is 4728%. At last, the recrystallization behavior of modified CNS-Ⅱ F/M steel was investigated. The relationship of critical strain and peak strain with Zener-Hollomon parameter were given by an experimental equation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号