首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超声波辅助不同反胶束体系前萃7S和11S球蛋白的研究   总被引:1,自引:0,他引:1  
主要研究了利用3种反胶束体系萃取7S、11S球蛋白,考查了缓冲溶液pH、WO、萃取温度、萃取时间等4因素对蛋白前萃率的影响规律,通过对3种反胶束体系提取7S、11S球蛋白的比较,筛选出最适于7S、11S蛋白的提取方法。在相同的条件下,AOT、CAB反胶束体系对大豆7S球蛋白的提取率一般高于对大豆11S球蛋白的提取率;而SDS反胶束体系对大豆7S球蛋白的提取率一般低于对11S球蛋白的提取率。为今后研究不同分子量大小的蛋白与反胶束"水池"微观结构相互关系的规律奠定基础。  相似文献   

2.
A new method was developed for extraction and isolation of 7S and 11S fractions from soybean seed, based on methods of Nagano et al., Thanh and Shibasaki [Nagano, T., Hirotsuka, M., & Mori, H. (1992). Dynamic viscoelastic study on the gelation of 7S globulin from soybeans. Journal of Agricultural and food chemistry 40, 941–944 and Thanh, V. H., & Shibasaki, K. (1976). Major proteins of soybean seeds. A straightforward fraction and their characterization. Journal of Agricultural and Food Chemistry 24, 1117–1121]. Optimization of the extraction and isolation of 11S and 7S globulins from soybean seed was investigated under various conditions by the Kjeldahl method and SDS-PAGE. The optimal conditions were as follows: 0.03–0.06 M Tris–HCl buffer (pH 8.5) containing 0.01 M sodium bisulfite as extract solution, extraction twice at 45 °C for 1 h, and with a 1:15 ratio (w/v) of flour:Tris–HCl. The 11S fraction was precipitated at pH 6.4, and the supernatant, after centrifugation, was adjusted to pH 5.5 to remove the insoluble intermediate fraction by further centrifugation. The supernatant obtained was then adjusted to pH 4.8 to afford the 7S fraction as a precipitate by centrifugation. With the improvements, the protein contents and purities of the isolated 11S and 7S fractions were significantly increased. The contents of all subunits of the isolated 11S and 7S fraction were markedly higher than those by Thanh and Shibasaki method, while the contents of α, β and B3 were also significantly higher than those by Nagano et al. method.  相似文献   

3.
利用转谷氨酰胺酶(TGase)对大豆11S球蛋白改性并对其疏水性进行研究.通过单因素考察和正交实验分析,得出最佳改性条件的组合为加酶量是30U/g,pH是7.5,反应温度是45℃,测得的最大11S蛋白表面疏水性指数(S0)为3076.6.  相似文献   

4.
以大豆7S和11S球蛋白为研究对象,采用纳米二氧化硅(SiO2)对其进行分子修饰,添加量分别为蛋白基料的0.5%、1.0%、1.5%,然后用1、3、5 mol/L尿素控制变性相结合的方法来提高7S与11S球蛋白在3种木材(水曲柳、樱桃木、松木)上的胶黏强度。结果表明,经纳米SiO2修饰后,大豆7S和11S球蛋白的胶黏强度明显增大,最佳添加量为1%;当浓度为1 mol/L的尿素与1%的纳米SiO2共同修饰7S和11S球蛋白后,其胶黏强度最大。同时采用差示扫描量热仪测定了大豆球蛋白修饰前后的焓变,并探讨了胶黏作用增强的可能机理。  相似文献   

5.
按照大豆蛋白质的构成,可以把11S和7S蛋白质凝胶特性的研究相对划分为3种类型:①蛋白质组分类型,研究11S和7S蛋白质热致凝胶的形成条件和部分特性;②分离蛋白类型,研究以11S和7S蛋白质为主要成分的大豆分离蛋白(SPI)凝胶特性;③蛋白质亚基类型,研究11S和7S蛋白质亚基的结构与凝胶形成机理的关系。对3种类型的研究具有相对的先后顺序,即在蛋白质组分类型基础上进行SPI类型的研究,在组分和SPI类型基础上进行亚基类型的初步研究,今后将对蛋白质亚基类型做深入研究。  相似文献   

6.
Fluorescence spectroscopy was used to differentiate between β‐conglycinin (βC) and glycinin (G) fractions that were isolated from four food grade soybean varieties (Glycine max var. K1430, Hutcheson, K93‐90‐29, and KS4997) grown in the same location. The protein fractions were discriminated by using spectroscopic tryptophan fluorescence emission and synchronous scanning techniques that took advantage of the sensitivity of the chromophore to changes in the protein environment. The relative intensities of the βC and glycinin fluorescence ranged from 1.00 to 1.30 and 1.00 to 1.31 respectively. The intensities of the βC and glycinin synchronous fluorescence ranged from 1.00 to 1.45 and 1.00 to 1.30 respectively. The spectroscopic method proved to be an effective technique to differentiate between different soybean varieties.  相似文献   

7.
7S和11S大豆球蛋白的分离研究   总被引:4,自引:0,他引:4  
本研究选择低温脱脂大豆粕为原料,提出并采用碱提酸沉膜分离法来分离7S和11S大豆球蛋白,通过SDS-PAGE电泳鉴定分离纯度,并与传统的几种方法比较分离效果.结果表明,碱提酸沉膜分离法的分离效果明显优于传统的方法,所得的7S和11S大豆球蛋白的纯度可以分别达到75.5%和84.7%.  相似文献   

8.
The acid-induced conformation changes between 7 and 11 S globulin, the major storage proteins in soybean seeds, were compared by ultraviolet difference spectra, ultracentrifugation and optical rotatory dispersion. Maximum denaturation occurred at approximately pH 2 in both and dissociation of the proteins into subunits and unfolding of the polypeptide chains were observed simultaneously. However, both proteins showed apparent differences in their readiness to undergo acid-induced denaturation. The differences were particularly remarkable in the presence of 0.1 ionic strength sodium chloride.  相似文献   

9.
大豆7S与11S球蛋白分离方法的研究   总被引:1,自引:0,他引:1  
文章就提取分离低温脱脂大豆粕中大豆7S和11S球蛋白的方法进行了研究.利用SDS-PAGE凝胶电泳来评定不同pH值对分离大豆7S球蛋白和大豆11S球蛋白的纯度的影响.实验结果表明,浸提大豆蛋白的最佳工艺参数为磷酸盐缓冲液浓度为0.02 mol/L、料液比1∶16、浸泡温度45 ℃、pH值为8.5,可得到最高浸提率为89.55%.分离大豆11S球蛋白的最适pH值为6.2,纯度达75.76%;分离大豆7S球蛋白的最适pH值为4.7,纯度达72.99%.  相似文献   

10.
11.
大豆籽粒贮藏蛋白11S和7S组分提取分离方法的优化   总被引:6,自引:0,他引:6  
为确定提取分离大豆贮藏蛋白11S和7S两种主要成分的最适方法,采用凯氏定氮和SDS-PAGE分析,从浸提液种类、提取液pH、浸提次数和温度、料液比、Tris-HCl浓度和还原剂种类等影响提取分离效果的因素着手,对Nagano法进一步优化。结果表明,浸提液采用pH 8.5、含0.01 mol/L亚硫酸氢钠的0.03~0.06 mol/L Tris-HCl缓冲液系统,提取温度45℃,料液比1∶15,重复浸提两次;分离过程中,在pH 6.4沉淀离心分离出11S组分、调pH 5.5沉淀离心分离出中间产物后,再调pH至4.8沉淀离心分离出7S组分。优化后的方法与Nagano法相比,可显著提高11S和7S组分的得率、蛋白含量和纯度。  相似文献   

12.
以6个具有代表性的大豆品种为实验材料提取7S和11S蛋白,经Superdex 200凝胶柱层析纯化制得纯品7S和11S蛋白,用SDS-PAGE和蛋白质纯化仪凝胶柱层析两种方法验证其纯度在90%以上。研究了7S和11S蛋白中氨基酸组成与表面疏水性的相关性。结果表明:7S和11S蛋白的表面疏水性与甘氨酸、脯氨酸、胱氨酸/半胱氨酸、丙氨酸、缬氨酸、蛋氨酸、酪氨酸、天冬氨酸、苏氨酸、组氨酸的含量呈正相关;与异亮氨酸、亮氨酸、苯丙氨酸、丝氨酸、赖氨酸的含量呈负相关;与谷氨酸和精氨酸的含量不相关。疏水性氨基酸总量与7S和11S蛋白的表面疏水性呈正相关,亲水性氨基酸总量与其表面疏水性不相关。  相似文献   

13.
以"活性肽搜寻与蛋白模拟水解系统"为工具,选择碱性蛋白酶和中性蛋白酶对大豆7S、11S蛋白进行模拟水解,得到不同水平的抗氧化肽肽段,以重均分子量为手段,评价理论模拟与实验水解的相关性;以还原力、清除二苯代苦味酰基苯肼(DPPH·)自由基能力比较以上蛋白酶水解物的抗氧化活性.结果表明:模拟与实验水解得到的分子量分布在比例以及重均分子量方面有显著相关性(P<0.01);四种酶解产物均具有一定的抗氧化活性,其中,以7S蛋白的碱性蛋白酶产物表现出最高的还原力和DPPH·清除能力(P<0.05).  相似文献   

14.
《食品与发酵工业》2016,(9):137-142
从大豆蛋白中分离出7S、11S大豆球蛋白,根据7S与11S球蛋白不同的蛋白质功能性质,通过不同的比例配比,添加至鸡肉丸中,考察7S/11S(质量比)大豆球蛋白不同配比对鸡肉丸蒸煮损失、颜色、硬度、弹性、自旋-自旋弛豫时间(T_2)时间变化以及感官特征的影响。结果表明:随着7S/11S比值的增大,鸡肉丸的蒸煮损失显著降低(P0.05),亮度值显著增加(P0.05)、硬度和弹性以及结合水的能力也显著增强(P0.05)。当7S/11S比值为4∶1时,蒸煮损失降低至最低2.13%(P0.05),此时肉丸的亮度值达到最大值51.85,肉丸的硬度、弹性、咀嚼性、胶黏性和回复性显著增强(P0.05),并具有良好的感官评分。  相似文献   

15.
以棉籽贮存蛋白为原料,采用蛋白纯化系统(配备凝胶层析柱)对棉籽7S和12S球蛋白进行分离纯化,对所得7S和12S球蛋白的蛋白质含量、氨基酸组成、变性温度及荧光强度等物化性质进行了测定分析。结果表明:棉籽7S及12S球蛋白的蛋白质含量分别为(91.59±0.53)%和(93.35±0.62)%,其SDS-PAGE谱图中除显示各自特征条带外无其他杂带,其氨基酸组成与绝大部分油料种子中球蛋白的基本一致,含有丰富的谷氨酸、天冬氨酸和精氨酸,而半胱氨酸和甲硫氨酸含量较低;差示扫描量热仪(DSC)分析棉籽7S及12S球蛋白的变性温度分别为93.3℃和107.7℃;棉籽7S及12S球蛋白的荧光发射光谱最大荧光强度均在325 nm左右。  相似文献   

16.
Soy protein, one of the most commonly used raw materials for texturised vegetable protein, has an important influence on texturised soy protein (TSP) with its 7S and 11S fractions. In this study, soy 7S and 11S proteins were extracted from soybean isolate and added back to the raw material to prepare TSP and analyse the effect of both on the physical properties of TSP. The results showed that the addition of 5% soy 7s or 11s protein increased the water-holding capacity (up to 9.04%) and rehydration rate (up to 25.71%) of TSP. Compared with adding soy 11s protein, adding soy 7s protein has a faster rehydration rate at a lower temperature (30 and 45 °C). After extrusion, the content of free sulphhydryl groups, total sulphhydryl groups, and disulphide bonds was significantly reduced (P < 0.05). The extrusion treatment caused degradation of the protein chains, and the proteins mainly formed insoluble polymers. Electrophoretic analysis revealed that the sodium dodecyl-sulphate (SDS) reducing the extractable rate of the precipitate after SDS non-reduction extraction of the TSP added with 5% soy 7S and 11S proteins were lower than that of the control. The proportion of different soybean protein components in TSP could change its texture, water-holding, and rehydration characteristics of it, which provides a new method for the characteristics design of TSP.  相似文献   

17.
研究了大豆乳清蛋白在豆奶体系中的热稳定性,并进一步研究生豆奶在加热过程中大豆乳清蛋白与大豆球蛋白之间的相互作用。大豆乳清蛋白溶于生豆奶超滤液中,将加热前后的该溶液分别经SephacrylS-300凝胶过滤,发现大豆乳清蛋白加热后会发生热凝聚现象,形成较大的蛋白凝聚物。通过比较大豆乳清蛋白溶液和无乳清蛋白豆奶溶液对pH变化的敏感性,发现大豆乳清蛋白和大豆球蛋白在加热过程中会发生相互作用。  相似文献   

18.
大豆7S和11S球蛋白的结构和功能性质   总被引:22,自引:2,他引:22  
主要介绍大豆7S和11S球蛋白的结构和功能性质,大豆蛋白质各个成分的分子量有所不同,按超速离心分离系数可分为2S,7S11S和15S4个组份。7S组份占总蛋白质的30.9%,它是由4种不同大豆蛋白民组成,11S组份占总大豆蛋白质的41%,而且都是单一的11S球蛋白,11S球蛋白的等电点为pH4.64。  相似文献   

19.
BACKGROUND: Wet gums produced during aqueous degumming of crude soybean oils are currently processed to produce lecithin or added to meals to increase their nutritive value for animal feed. Oils occluded in these gums are generally not recovered or processed. In this work, three methods to recover occluded oil and obtain lecithin from wet gums were assayed: direct extraction of oil with cold acetone (Method I), extraction after water elimination under vacuum (Method II) and by solvent partition with hexane/ethanol (Method III). RESULTS: Higher oil yields (up to 588 g kg?1 of occluded oil) were obtained when water was eliminated before extraction (Methods II and III). No significant differences were observed in lecithin yields between three methods (720–807 g kg?1 of dried gums). Recovered oils had acidity = 16.7–21.7 g kg?1 as oleic acid, TOTOX (total oxidation) values ≤ 8.82, unsaponifiable matter = 9.0–12.1 g kg?1, and Phosphorus = 87–330 mg kg?1. Lecithins obtained by Methods I, II and III hexane phase had the same purity level (610–691 g of total measured phospholipids kg?1). CONCLUSIONS: The occluded oil in soybean wet gums can be recovered, with quality and stability indexes compatible with their reinsertion in the productive process, by water elimination and extraction with acetone. Lecithins can be obtained with different phospholipid composition and diverse application fields. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
SDS gel capillary electrophoresis (Beckman–Coulter ProteomeLab) and the lab-on-a-chip technology (Agilent 2100 Bioanalyzer) were used to quantify the relative amount of 7S and 11S fractions in twenty different soybean cultivars. The better repeatability of the migration times and peak areas was achieved for the Bioanalyzer. Both lab-on-a-chip instrument and a traditional capillary gel electrophoresis were shown to be adequate for analysis of soy-based products. Integrating the area of peaks within a certain range of molecular weights was used to calculate the relative content of each protein subunit. Poor agreement in the classification in the protein subunit groups between the two instruments was observed. Therefore, the approach of visual identification taking into account both the variability in the position of the peaks and the detection of different number of peaks between the profiles was applied. This resulted in statistically significant correlation being observed between 11S/7S ratios determined by Bioanalyzer and ProteomeLab ( R  = 0.82). The reported differences in 11S and 7S content between the studies are likely to be affected by the differences in the techniques used to analyse soy protein subunits. A brief presentation of the chemometric analysis of electrophoretic profiles as a common method for transforming electrophoretograms to multivariate data sets is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号