首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of conventional and booster chlorination on chlorine residuals and trihalomethane (THM) formation in drinking water distribution systems was modeled using the EPANET hydraulic modeling software. The model results suggest that booster chlorination may allow utilities to meet disinfection goals better by carrying chlorine residuals to remote points in the distribution system while lowering the total mass of chlorine applied to the system. The model results suggest that booster chlorination may provide the greatest advantages to points in the distribution system located near storage tanks by providing a more consistent chlorine residual and possibly reducing THM formation. A new version of the EPANET model, the EPANET Multispecies model, was also used to compare chlorine decay due to reactions in the bulk fluid and reactions occurring at the pipe wall. The results suggest that chlorine decay due to wall reactions can be very significant at remote points in the distribution system. Additionally, if THMs are assumed to form primarily through reactions in the bulk fluid, use of the new EPANET Multispecies software allows for calculation of THM formation based solely on chlorine reactions in the bulk fluid rather than on overall chlorine decay.  相似文献   

2.
This study investigates the interaction of natural organic matter with iron oxide (goethite) on chlorine decay, disinfection by-product (DBP) formation, and DBP compound speciation [total trihalomethanes (TTHM4) and haloacetic acids (HAA5)]. Batch experiments were conducted with goethite, multiple finished drinking waters, variable chlorine dose, and fixed pH 8. The overall objective was to assess natural organic matter (NOM) adsorption onto goethite and its effect on chlorine decay and DBP formation. Chlorine consumption always increased in the presence of goethite and is attributed to an increase in the reactivity and/or modification of adsorbed NOM. Adsorbed NOM also led to an overall increase in TTHM4, however, HAA5 formation was suppressed during the first 2?h. Chloroform was identified as the increasing species and dichloracetic acid was identified as the suppressed species. This study clearly shows that goethite, which is the predominant iron oxide of pipe deposits, alters both chlorine decay and DBP formation and should be considered when assessing water treatment plant operations and DBP monitoring site selection.  相似文献   

3.
The Massachusetts Water Resources Authority (MWRA) supplies unfiltered water from two large surface water reservoirs to the metropolitan Boston area, as well as to three smaller communities in central Massachusetts [the Chicopee Valley Aqueduct (CVA) communities]. Quabbin Reservoir is larger than Wachusett Reservoir, and has traditionally been used to supplement the Wachusett during the summer period. Quabbin water is also of better quality, with lower reactive natural organic matter (NOM). The MWRA began to add chlorine at Wachusett in 1997, and a new facility for adding chlorine at Quabbin for the CVA was also started up in 2000 to meet primary disinfection regulations to meet pathogen inactivation. The reaction of chlorine with NOM produces undesirable disinfection by-products (DBPs). The absorption of ultraviolet light at a wavelength of 254 nm was identified in chlorine decay studies to be the most important raw water quality parameter for predicting chlorine decay and DBP formation. This technical note summarizes the chlorine decay model for Wachusett and Quabbin water. The model is extended to ozonation of Wachusett water for the future Walnut Hill treatment plant. The models allowed the development of a trigger using UV-254 to time the Quabbin transfer to optimize treatment results. It is believed that the model for disinfectant decay and the use of UV-254 as a trigger for water treatment decisions are generalized and applicable to other water utilities.  相似文献   

4.
The impacts of bromide concentration and natural organic matter (NOM) characteristics on the formation and speciation of disinfection by-products (DBPs) in chlorinated NOM fractions were investigated. A total of 20 bulk water NOM fractions with a wide range of specific ultraviolet (UV) absorbance (SUVA254) values were obtained from a source water employing XAD-8 or XAD-4 resin adsorption in completely mixed batch reactors. SUVA was not a good predictor of DBP [trihalomethanes (THMs), haloacetic acids (HAAs), and adsorbable organic halogens (AOX)] formation and speciation. The destruction in the UV254 absorbance from chlorination did not correlate with DBP formation at any bromide level. NOM moieties which do not absorb UV light at 254?nm significantly contributed to DBP formation. Mass balance calculations on halogens using THMs, HAAs, and AOX data indicated that significant amounts of DBPs (>54% of AOX) other than THMs and HAAs were formed in NOM fractions with 60–110?μg/L bromide concentration. The relative occurrence of such other halogenated by-products decreased with increasing bromide concentrations up to 500?μg/L level. NOM in the studied water was more susceptible to the formation of brominated THM species as opposed to brominated HAAs. At constant dissolved organic carbon concentration, chlorine dose and pH, increasing bromide concentrations in NOM fractions increased the total concentrations of DBPs and resulted in a shift toward the formation of brominated species. Further, increasing bromide concentrations increased the spectrum of detected species (i.e., occurrence of all nine HAAs) and provided a competitive advantage to THM and HAA precursors in NOM over precursors of other DBPs.  相似文献   

5.
Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use in many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.  相似文献   

6.
Drinking water utilities may be required to change disinfectant to improve water quality and meet more stringent disinfection regulations. This research was conducted to assess and compares chlorine dioxide to free chlorine and chloramines on bacterial water quality monitored within model distribution systems (i.e., annular reactors). Following colonization with nondisinfected water, annular reactors containing either polycarbonate or cast iron coupons were treated with free chlorine, chlorine dioxide or chloramines. Two disinfectant doses (low/high) were tested for each disinfectant. Under specific environmental conditions, bacterial inactivation varied as a function of the disinfectant type and dose, sample type (bulk water versus biofilm bacteria) and coupon material. The ranking by efficiency was as follows: chlorine dioxide > chlorine > chloramines. On preformed biofilms of 106–107?cfu/cm2, the continuous application of a disinfectant led to a log removal of heterotrophic bacteria concentrations for suspended and biofilm bacteria ranging from 1.1 to 4.0, and from 0.2 to 2.5, respectively. Doubling the amount of disinfectant doses led to an additional log inactivation of 1–2.5 of heterotrophic bacteria levels. This study demonstrates that bacterial inactivation in distribution systems is governed by various inter-related parameters. The data indicate that chlorine dioxide represents a viable alternative for secondary disinfection in distribution systems.  相似文献   

7.
Chlorination is an effective method for disinfection of drinking water. Yet chlorine is a strong oxidizing agent and easily reacts with both organic and inorganic materials. Trihalomethanes (THMs), formed as a by-product of chlorination, are carcinogenic to humans. Models can be derived from linear and nonlinear multiregression analyses to predict the THM species concentration of empirical reaction kinetic equations. The main objective of this study is to predict the concentrations of THM species by minimizing the nonlinear function, representing the errors between the measured and calculated THM concentrations, using the genetic algorithm (GA) and simulated annealing (SA). Additionally, two modifications of SA are employed. The solutions obtained from GA and SA are compared with the measured values and those obtained from a generalized reduced gradient method (GRG2). The results indicate that the proposed heuristic methods are capable of optimizing the nonlinear problem. The predicted concentrations may provide useful information for controlling the chlorination dosage necessary to assure the safety of water drinking.  相似文献   

8.
Modern water treatment must maintain an acceptable balance between the microbial safety of potable water supply, the costs of treatment, and the formation of potentially harmful disinfection by-products (DBPs). In order to achieve the optimum balance, it is essential to understand and predict both the formation of DBP and the decay of chlorine, in relation to source water, treatment processes, storage, and supply. Reported herein are new data which demonstrate the lack of durability, precision, and accuracy associated with earlier empirical chlorine decay rate equations. This work develops an improved methodology for the prediction of variation in chlorine decay rates in distribution systems enabling practical, cost-effective prediction of the effects of both seasonal variations and management interventions on chlorine levels at treatment works and in distribution systems.  相似文献   

9.
BACKGROUND: Water chlorination has been one of the major disease prevention treatments of this century. While epidemiologic studies suggest an association between cancer in humans and consumption of chlorination byproducts in drinking water, these studies have not been adequate to draw definite conclusions about the carcinogenic potential of the individual byproducts. PURPOSE: The purpose of this study was to investigate the carcinogenic potential of chlorinated or chloraminated drinking water and of four organic trihalomethane byproducts of chlorination (chloroform, bromodichloromethane, chlorodibromomethane, and bromoform) in rats and mice. METHODS: Bromodichloromethane, chlorodibromomethane, bromoform, chlorine, or chloramine was administered to both sexes of F344/N rats and (C57BL/6 x C3H)F1 mice (hereafter called B6C3F1 mice). Chloroform was given to both sexes of Osborne-Mendel rats and B6C3F1 mice. Chlorine or chloramine was administered daily in the drinking water for 2 years at doses ranging from 0.05 to 0.3 mmol/kg per day. The trihalomethanes were administered by gavage in corn oil at doses ranging from 0.15 to 4.0 mmol/kg per day for 2 years, with the exception of chloroform, which was given for 78 weeks. RESULTS: The trihalomethanes were carcinogenic in the liver, kidney, and/or intestine of rodents. There was equivocal evidence for carcinogenicity in female rats that received chlorinated or chloraminated drinking water; this evidence was based on a marginal increase in the incidence of mononuclear cell leukemia. Rodents were generally exposed to lower doses of chlorine and chloramine than to the trihalomethanes, but the doses in these studies were the maximum that the animals would consume in the drinking water. The highest doses used in the chlorine and chloramine studies were equivalent to a daily gavage dose of bromodichloromethane that induced neoplasms of the large intestine in rats. In contrast to the results with the trihalomethanes, administration of chlorine or chloramine did not cause a clear carcinogenic response in rats or mice after long-term exposure. CONCLUSION: These results suggest that organic byproducts of chlorination are the chemicals of greatest concern in assessment of the carcinogenic potential of chlorinated drinking water.  相似文献   

10.
All four possible trihalomethanes (THMs) containing bromine and chlorine, as well as perchloroethylene (PCE), were evaluated for their ability to produce DNA strand breaks, alpha 2u-globulin rich renal deposits, and testosterone changes in male F-344 rats. Rats received daily equimolar doses (0.75 or 1.5 mmol/kg) of THMs or PCE (1000 mg/kg) in 4% Emulphor vehicle by oral gavage for 7 days. No significant DNA strand breaks were produced by any THM or PCE treatment. PCE treatment produced increased hyaline droplet formation in renal tubules. However, all THM treatments reduced or eliminated the appearance of renal hyaline droplets. All four THM treatments also produced a decrease in serum testosterone concentrations on day 7, which might account for decreased hyaline droplet formation. No significant increase in cell proliferation, measured by [3H]thymidine incorporation in vivo, appeared in this 1-week study.  相似文献   

11.
Exposure to disinfection by-products (DBPs) of drinking water is multiroute and occurs in households serviced by municipal water treatment facilities that disinfect the water as a necessary step to halt the spread of waterborne infectious diseases. Biomarkers of the two most abundant groups of DBPs of chlorination, exhaled breath levels of trihalomethanes (THMs) and urinary levels of two haloacetic acids, were compared to exposure estimates calculated from in-home tap water concentrations and responses to a questionnaire related to water usage. Background THM breath concentrations were uniformly low. Strong relationships were identified between the THM breath concentrations collected after a shower and both the THM water concentration and the THM exposure from a shower, after adjusting for the postshower delay time in collecting the breath sample. Urinary haloacetic acid excretion rates were not correlated to water concentrations. Urinary trichloroacetic acid excretion rates were correlated with ingestion exposure, and that correlation was stronger in a subset of individuals who consumed beverages primarily within their home where the concentration measurements were made. No correlation was observed between an average 48-hr exposure estimate and the urinary dichloroacetic acid excretion rate, presumably because of its short biological half-life. Valid biomarkers were identified for DBP exposures, but the time between the exposure and sample collection should be considered to account for different metabolic rates among the DBPs. Further, using water concentration as an exposure estimate can introduce misclassification of exposure for DBPs whose primary route is ingestion due to the great variability in the amount of water ingested across a population.  相似文献   

12.
The potential of biological processes during aquifer storage to reduce disinfection by-products (DBP), and DBP precursors were examined under controlled conditions. Finished water treated by conventional water treatment practice was pumped into a sand media column for up to 34 days of residence time. Two experiments were conducted where the finished water was chlorinated or ozonated prior to injection. Chlorination of water withdrawn from simulated aquifer storage conditions resulted in reduced formation of trihalomethane (THM) concentrations for all three treated water types. Ozonation of finished water resulted in a 70% decrease in TTHM formation. Aquifer storage of finished water resulted in a 26–28% reduction in TTHM formation and the removal of preformed THM species was as high as 40%. Overall, aquifer storage of chlorinated finished water resulted in a 44% reduction in TTHM formation when additionally chlorinated after withdrawal. Bromate formed during ozonation was reduced by approximately 54%. This study indicates that the sequencing of chlorination or ozonation with respect to aquifer storage and recovery operations can impact DBP formation.  相似文献   

13.
In many areas of Northern and Western Alaska, small streams and shallow lakes serve as community raw water supplies. These water supplies freeze completely during winter. In order to supply drinking water during the 6–9 month winter, communities store water that was treated during summer. A chlorine residual is maintained in the stored water. Raw water sources derived from surface water may be heavily laden with dissolved organic matter. At utilities where organic matter escapes treatment, the potential for accumulation of disinfection by-products (DBPs) during storage is a significant health concern. The following study was performed to evaluate this potential threat. Water was collected from five operating utilities, four that normally store water for 6–9 months and one that produces drinking water year-round. Raw, filtered (i.e., unchlorinated) and “finished” (i.e., filtered and chlorinated) water samples were collected during the summer pumping season and stored in the laboratory for 8 months. In order to mimic practice in the field, the chlorine residual was maintained in the finished water for the full storage period. While the concentration of DBPs in the finished water varied over the study period, there was not a statistically significant trend from the third to the eighth month of storage. The observed DBP values were strongly a function of the type of treatment system used. Those systems passing more organic matter had higher DBP values throughout the storage period. The ultraviolet absorbance at 254 nanometers ?start(UV254)end? decreased continuously in the finished water coincident with chlorine consumption. ?startUV254end?, often used as a surrogate for DBPs, remained constant during the entire storage periodin raw and filtered water samples. Filtered water that was stored prior to chlorination accumulated fewer DBPs than finished water that was continuously chlorinated during the storage period. This result suggests that storing filtered water instead of finished water for long periods would limit DBP exposure to consumers. This conclusion was based on a comparison of DBP formation potentials (i.e., raw and filtered water) to DBPs (i.e., finished water). It is important to note that DBP formation potentials are based on a ?start24?hend?chlorine contact time. If long term storage were provided for filtered water, a smaller volume of secondary storage would still be needed to provide contact time for disinfection.  相似文献   

14.
In this research, a number of process modifications to the lime-soda softening process were examined, including utilization of high Mg-content lime, addition of MgCl2, and the recycling of softening sludge, in order to improve the removal of natural organic matter (NOM) and reduce the formation of disinfection byproducts (DBPs). Jar test results showed that dissolved organic carbon (DOC) removal increased and trihalomethane (THM) formation was reduced as the magnesium in hydrated lime increased, and was directly correlated with the amount of magnesium removed from the system. However, a dolomitic quick lime hydrated under atmospheric conditions resulted in less effective DOC removal due to a lack of available Mg, and subsequently, less co-precipitation of Mg(OH)2-NOM complexes. The addition of MgCl2 to the raw water also increased DOC removal and reduced THM formation in both the presence and absence of softening sludge, with DOC removal increasing as softening sludge and magnesium dosages increased. As high as 43% removal of DOC was achieved at the stoichoimetric lime-soda ash dose in the presence of 457 mg/L sludge and 7.5 mg/L MgCl2, as compared to only 13% removal in the absence of sludge and MgCl2. The recycling of softening sludge had little or no effect on the hardness and the level of inorganic elements in treated water. The results presented here provide new approaches for improving DBP precursor removal during lime-soda softening without significantly increasing lime and soda ash dosage or the generation of waste sludge.  相似文献   

15.
BACKGROUND: Many Legionella infections are acquired through inhalation or aspiration of drinking water. Although about 25% of municipalities in the USA use monochloramine for disinfection of drinking water, the effect of monochloramine on the occurrence of Legionnaires' disease has never been studied. METHODS: We used a case-control study to compare disinfection methods for drinking water supplied to 32 hospitals that had had outbreaks of Legionnaires' disease with the disinfection method for water supplied to 48 control-hospitals, with control for selected hospital characteristics and water treatment factors. FINDINGS: Hospitals supplied with drinking water containing free chlorine as a residual disinfectant were more likely to have a reported outbreak of Legionnaires' disease than those that used water with monochloramine as a residual disinfectant (odds ratio 10.2 [95% CI 1.4-460]). This result suggests that 90% of outbreaks associated with drinking water might not have occurred if monochloramine had been used instead of free chlorine for residual disinfection (attributable proportion 0.90 [0.29-1.00]). INTERPRETATION: The protective effect of monochloramine against legionella should be confirmed by other studies. Chloramination of drinking water may be a cost-effective method for control of Legionnaires' disease at the municipal level or in individual hospitals, and widespread implementation could prevent thousands of cases.  相似文献   

16.
BACKGROUND: Breast cancer is a major cause of morbidity and mortality in the United States (U.S.) and Missouri. In 1992, 3,915 new breast cancer cases were diagnosed and in 1995, 1,006 deaths from breast cancer were reported in Missouri. Although breast cancer incidence has increased in Missouri in the past 20 years, there are indications that early detection has also increased during the same period. Knowledge about which segments of the population have experienced the greatest increase in mammography screening rates helps in planning and implementation of breast cancer control programs at the state level. OBJECTIVES: Examine the prevalence and trends of lifetime mammography and 2-year mammography compliance in Missouri by age, race, and education from 1987 to 1995 and make predictions for the years 2000 and 2010. METHODS: We used data from the Missouri Behavioral Risk Factor Surveillance System (BRFSS), 1987 to 1995, to estimate the prevalence of ever having had a mammogram and compliance with mammography screening guidelines within two years by race, age, and education status among Missouri women over age 18. Using linear models, we regressed breast cancer screening prevalence estimates on time to obtain trends and predictions. RESULTS: Overall, African-American women were more likely to have had a lifetime mammogram than white women. However, we found a steady increase in the prevalence of ever having had a mammogram for all groups of women defined by age and education status, except among African Americans. Increase in the prevalence of ever having had a mammogram was much higher in women age 50 and older and slightly higher among women with a high school education or less. The average prevalence of 2-year mammography screening compliance was about 60% for all groups, a rate which did not significantly change between 1987 and 1995. By the year 2000, white women will have mammography rates equal to or higher than African-American women, and the majority of all women age 50 and older (98.3% to 100%) will have had a lifetime mammogram. CONCLUSION: Missouri target populations are predicted to attain Year 2000 National Health Objectives concerning lifetime mammography. Current efforts should be continued in order to maintain levels of mammography, particularly among African-American women.  相似文献   

17.
确定了医院废水采用二氧化氯进行消毒。具有消毒效果好、符合污染物国家一级排放标准(GB8978—1996)、运行费用低等特点。本实践给同类污水消毒,提供了借鉴作用。  相似文献   

18.
A population-based case-control study of bladder cancer and drinking water disinfection methods was conducted during 1990-1991 in Colorado. Surface water in Colorado has historically been disinfected with chlorine (chlorination) or with a combination of chlorine and ammonia (chloramination). A total of 327 histologically verified bladder cancer cases were frequency matched by age and sex to 261 other-cancer controls. Subjects were interviewed by telephone about residential and water source histories. This information was linked to data from water utility and Colorado Department of Health records to create a drinking water exposure profile. After adjustment for cigarette smoking, tap water and coffee consumption, and medical history factors by logistic regression, years of exposure to chlorinated surface water were significantly associated with risk for bladder cancer (p = 0.0007). The odds ratio for bladder cancer increased for longer durations of exposure to a level of 1.8 (95% confidence interval 1.1-2.9) for more than 30 years of exposure to chlorinated surface water compared with no exposure. The increased bladder cancer risk was similar for males and females and for nonsmokers and smokers. Levels of total trihalomethanes, nitrates, and residual chlorine were not associated with bladder cancer risk after controlling for years of exposure to chlorinated water.  相似文献   

19.
The objective of this paper is to evaluate the change in Bacillus subtilis spore survival and dimensions following ultraviolet and chlorine disinfection in water. Disinfection was monitored by using tools such as atomic force microscopy (AFM), particle sizing by the electrozone sensing technique and fluorescence of spores after staining with an optical brightener. Results indicated that there was a change in the adsorbed fluorescence following chlorine; however, the magnitude of this change was only approximately twofold at 90% of spore kill. In addition, changes in spore particle-size distribution following chlorine occur at above 99.9% of spore kill. Even the roughness (RMS), width, and length of spores as measured by AFM change only after about 99% of spore killing with chlorine. Use of optical brighteners, AFM, and sizing are not sensitive enough for detecting the disinfection of chlorine-resistant spores and as expected no changes occurred with ultraviolet treated spores. Even though, these techniques may have the potential for determining oxidative disinfection and for the development of monitors and sensors of chemical disinfection for chlorine-sensitive microorganisms.  相似文献   

20.
A bench-scale study was conducted to determine the inactivation of adenovirus (Ad) types 2, 5, and 41 by ultraviolet (UV) light, chlorine, and monochloramine. The motivation for this study was to determine whether UV disinfection followed by chlorine or monochloramine for a very short contact time (e.g., a minute) could satisfy regulatory requirements for four-log virus inactivation. In order to overcome the difficulty Ad 41 presents for enumeration of the virus in cell culture, a technique was used that combined immunofluorescent staining of viral antigen with traditional scoring of cytopathic effect. A UV dose of 40?mJ/cm2 (millijoules per square centimeter) (applied using a collimated beam apparatus) achieved approximately one-log inactivation of adenovirus types 2, 5 and 41, confirming previous research. Ad 41 was found to be more UV resistant to UV light than Ad 2 or Ad 5 at UV doses >70?mJ/cm2 to a statistically significant degree (95% confidence); however, at lower UV doses there were no statistically significant differences. Experiments with Ad 5 and Ad 41 at 5°C and pH 8.5 showed that chlorine was very effective against Ad 5 and Ad 41, with a product of disinfectant concentration and contact time (CT) of 0.22?mg min/L providing four-log inactivation. Monochloramine was less effective against these adenoviruses, with a CT of 350?mg min/L required to achieve 2.5-log inactivation of Ad 5 and 41 at 5°C and pH 8.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号