共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为使电动汽车在低附着系数路面上再生制动时车轮具有防抱死功能,提出了一种通过控制电机的再生制动力与反接制动力来防止车轮抱死的方法。阐述了电动汽车低速再生ABS工作原理,建立了电动汽车单轮车辆动力学模型;根据电机低速再生制动的电路稳态条件,利用模糊控制理论设计了基于滑移率控制模式的再生ABS控制系统。仿真结果表明:系统不但鲁棒性强,而且反应迅速,控制精度高;制动过程由占主体的再生制动和制动末期出现的反接制动组成;在电机峰值工作能力内,随地面附着性能的提高,再生ABS回收的制动能也随之增加。 相似文献
3.
基于对CVT混合动力汽车制动力分配的分析,综合考虑发动机反拖制动、CVT速比及夹紧力控制、电池快速充电特性与电机高效发电特性对再生制动性能的影响,制订了相应的再生制动控制策略。根据前向建模思想,利用数值建模与理论建模的方法,建立了CVT混合动力汽车再生制动系统综合模型,进行了EUDC等四种典型循环工况下的再生制动性能仿真,在保证安全制动的条件下,实现了较高比率的制动能量回收,仿真结果证明了所提出的再生制动控制策略和系统模型的正确性与适用性。 相似文献
4.
基于最佳制动效果的并联式混合动力汽车再生制动控制策略 总被引:1,自引:0,他引:1
在遵循制动力分配原则的基础上,提出了基于最佳制动效果和模糊控制的再生制动控制策略,使机械制动和再生制动可以很好地协同工作,实现前后轮制动力合理分配。设计了以制动强度和蓄电池荷电状态为输入变量,以期望再生制动力为输出变量的模糊控制器。利用仿真软件ADVISOR,对所设计的控制策略进行了部件性能、制动能量回收、制动感觉三方面仿真分析。同时,为验证ADVISOR仿真结果的有效性,搭建了硬件在环仿真实验平台。结果表明,所设计的控制策略在保证汽车制动稳定性的前提下,能够使驾驶员获得满意的制动感觉,同时有效提高了汽车能量利用率,最终达到了最佳制动效果。 相似文献
5.
混合动力汽车再生制动压力协调控制系统 总被引:4,自引:0,他引:4
再生制动作为混合动力汽车中的一门关键技术,越来越受到大家的关注和重视,针对国内外混合动力汽车再生制动压力协调控制系统的局限性和复杂性,设计出一种基于ABS硬件的再生制动压力协调控制系统,该系统实现了再生制动与 (Anti-lock braking system,ABS)制动功能下的压力协调控制。建立AMEsim与Simulink联合仿真模型并进行恒制动强度下、变制动强度下、纯ABS模式下和综合制动模式下的仿真分析,结果表明除纯ABS外各模式下的电池SOC(State of Charge)回收率分别为0.27%、0.33%和0.29%,仿真结果表明电机能将汽车制动时减少的能量进行一定程度的回收并提供制动力。因此,所设计系统能实现各制动模式下压力协调控制以满足汽车制动需求,仿真结果验证了该方案的有效性和可行性,为再生制动系统的设计与优化奠定了基础。 相似文献
6.
CVT混合动力汽车再生制动系统仿真 总被引:8,自引:0,他引:8
根据试验获取的镍氢电池快速充电特性和集成启动电机(Integrated starter/generator,ISG)发电特性,分析电动机发电效率与电池充电效率的变化规律,得到在不同输入条件下电池电动机联合效率曲线图,从而确定电池电动机联合高效优化工作线。基于此优化工作线,制定CVT速比控制策略及再生制动控制策略,并建立整车再生制动系统模型,在典型城市驱动循环工况下进行仿真分析与试验验证。结果表明,提出的基于电池电动机联合高效工作比基于电动机单独高效工作的CVT控制策略能进一步提高再生制动能量回收率。 相似文献
7.
电动汽车坡道单轴制动稳定性与再生制动极限控制研究 总被引:1,自引:0,他引:1
在满足制动稳定性和ECE法规等条件下,尽量增大电动汽车驱动轴上的制动力比例,甚至仅由再生制动力矩进行单轴制动,是实现理想复合制动系统、提高制动能量回收效率的根本途径。电动汽车驱动形式和轴荷分布会影响到其坡道单轴制动行驶的纵向稳定性。对汽车上、下坡过程单轴制动4种工况下出现抱死、纵翻和纵滑的临界条件进行分析,得到电动汽车坡道单轴制动稳定性条件和再生制动强度的极限边界。 相似文献
8.
9.
本文阐述了串联式混合动力电动汽车动力系统元件电动机的设计。总结了各种类型电动机的特点,分析了电动机的转速、额定功率,峰值功率以及额定电压等参数的设计理论。 相似文献
10.
针对纯电动汽车电液复合制动系统电机再生制动力与液压制动力动态响应特性的差异及其非线性特性问题,提出了一种基于Agent的电液复合制动防抱死控制方法。构建了由电机Agent、液压制动Agent和ABS Agent组成的复合制动系统,依据让步策略、竞争策略和协同策略对电机再生制动力和液压制动力协调分配。MATLAB/Simulink仿真结果表明:紧急制动状态下,各Agent间能有效协作,前轮始终先于后轮进入抱死趋势,复合制动系统可以准确识别路面附着系数变化并及时调整电机制动力与液压制动力,提高了制动稳定性与系统的自适应能力。 相似文献
11.
混合动力汽车的出现在一定程度上缓解了能源危机和环境问题。控制策略作为混合动力汽车的核心技术,对动力性和燃油经济性的实现起到至关重要的作用。主要研究模糊逻辑控制策略的制定及基于 Advisor 的仿真。提出了将总需求转矩和电池荷电状态划分为更多模糊子集以得到更细的模糊规则的方法。通过比较仿真结果验证了细分的模糊逻辑控制策略对提高动力性和燃油经济性的积极作用。 相似文献
12.
13.
提出了一种汽车防抱死系统与主动悬架联合控制策略。将采用光滑滑模控制的防抱死系统同采用反向递推控制的主动悬架相结合,在车辆制动时,主动悬架调节作用在车轮上的垂直载荷,使车轮的垂直载荷在车轮滑移率达到最优时也相应增加,从而获得最大的制动力。在MATLAB/Simulink仿真环境下,建立了仿真模型并进行了车辆制动模拟试验。试验结果表明,采用联合控制的车辆,在保证车辆制动稳定性的同时能够获得最大的地面制动力,从而显著提高了车辆的制动效能。 相似文献
14.
15.
16.
为提高城市电动公交车再生制动能量回收效率,针对城市电动公交车日常运输载重变化显著的特点,提出了一种基于不同载荷率的再生制动控制策略。建立了不同载重情况下电动公交车的行车制动系前后轴制动力分配系数优化模型,运用遗传算法求出了空载、半载、满载情况下的最优制动力分配系数,并根据优化后的制动力分配系数对再生制动力进行了控制。为验证控制策略的有效性,在电动汽车仿真软件ADVISOR2002平台上进行了仿真分析。结果表明:与制动力分配系数无调整时相比,该策略在符合欧洲经济委员会(ECE)制动法规的前提下,显著提高了制动能回收量。 相似文献
17.
混合动力城市客车串联式制动能量回馈技术 总被引:4,自引:0,他引:4
设计出一种新型的制动能量回馈系统及相应控制策略从而显著降低混合动力城市客车的油耗并保证车辆的制动安全。以某型混合动力城市客车为研究对象,基于开关阀和制动防抱系统(Anti-lock braking system,ABS)、驱动电动机以及蓄电池储能装置设计出一种新型串联式制动能量回馈系统,实现气压制动力和回馈制动力的协调控制、ABS系统与回馈制动系统的协调控制;基于Matlab/Simulink软件建立制动能量回馈系统的仿真模型,对制动能量回收系统在不同控制策略下进行中国典型城市公交循环的仿真分析;在基于dSPACE实时硬件平台及制动系统硬件组成的制动能量回馈试验台架上,测试分析回馈制动力与气压制动力以及ABS系统的协调控制关系。结果表明,所研发的制动能量回馈系统安全可靠,ABS系统能够独立工作而不受新增系统的影响;回馈制动力与摩擦制动力能很好地调节,最大限度地发挥能量回馈能力;能量回馈效果显著,中国典型城市公交循环的制动能量回收率在50%以上。 相似文献
18.
19.
20.
混合动力城市客车制动能量回收系统道路试验 总被引:14,自引:1,他引:14
为提高制动能量回收系统性能,针对某型串联式混合动力城市客车,选用一种串联式制动能量回收装置进行道路试验研究.针对研究对象,设计出串联、并联等多种制动力分配策略;开发出一套道路试验测试系统,适用于中国典型城市公交循环等多种工况条件下进行道路试验;利用dSPACE硬件平台快速成型一个包含控制算法的控制单元,替代实际的整车控制器. 将所搭建的控制单元应用到实际的目标车辆上,利用自己设计的制动能量回收道路试验系统对目标车辆进行制动性能试验以及制动能量回收经济性试验等;重点研究不同策略下的制动能量回收的经济性及整车的制动舒适性,以及影响制动经济性与舒适性的因素.试验结果表明,所研发的制动能量回收装置能够实现不同的制动力分配策略,串联式制动能量回收策略能够在保证驾驶员制动感觉的前提下回收较多的制动能量,是多种方案中相对较好的选择. 相似文献