首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8·5 mbar for 18 h. Argon and oxygen gases were used as sputtering and reactive gases, respectively. ZnO phase could be crystallized using a pure metal target of zinc. The structure of the films determined by means of X-ray diffraction method indicates that the zinc oxide single phase can be fabricated in this substrate temperature range. The sensitivity of the film synthesized at substrate temperature of 130°C is 2·17 in the presence of CO2 gas at a measuring temperature of 100°C.  相似文献   

2.
Zinc oxide (ZnO) thin films are prepared using sol–gel method for acetone vapor sensing. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) was taken as starting material and a stable and homogeneous solution was prepared in ethanol by deliquescing the zinc acetate and distinct amount of monoethanolamine as a stabilizing agent. The prepared solution was then coated on silicon substrates by spin coating method and then annealed at 650 °C for preparing ZnO thin films. The thickness of the film was maintained at 410 nm. The structural, morphological and optical studies were done for the synthesized ZnO thin films. The operating temperature and sensor response is considered to be an important parameter for the gas sensing behavior of any material. Therefore, the present study examined the effect of sensing behavior of 3% v/v gold (Au) doped ZnO thin films as a sensor. The response characteristics of 410 nm ZnO thin film for temperature ranging from 180 to 360 °C were determined for the acetone vapors. The reported study provides a significant development towards acetone sensors, where a very high sensitivity with rapid response and recovery times are reported with lowered optimal operating temperature as compared to bare ZnO nano-chains like structured thin films. In comparison to the bare ZnO thin films giving a response of 63 at an operating temperature of 320 °C, a much better response of 132.3 was observed for the Au doped ZnO thin films at an optimised operating temperature of 280 °C for a concentration of 500 ppm of acetone vapors.  相似文献   

3.
ZnO/SnO_2,SnO_2/ZnO UPF复合膜的制备及气敏特性研究   总被引:3,自引:0,他引:3  
用直流气体放电活化反应蒸发沉积技术在普通玻璃基片上制备了ZnO/SnO2及SnO2/ZnO超微粒子(UPF)双层复合薄膜。样品经扫描电子显微镜(SEM)和X射线衍射仪分析,结论为超微粒子的复合薄膜。同时提出了最佳制备工艺。气敏测试结果表明:ZnO/SnO2及SnO2/ZnOUPF复合膜较单层ZnO及SnO2UPF表现出优良的选择性,其灵敏度和最佳工作温度也得到相应的改善。  相似文献   

4.
L.P. Dai  G. Chen  M. Wei  Y. Li 《Materials Letters》2007,61(16):3539-3541
A novel solid organic zinc fountain as a precursor for thin films of zinc oxide by single source chemical vapour deposition (SSCVD) had been prepared through simple procedures. To synthesize the precursor, zinc oxide and acetic acid of the molar ratio 2:3 were used to react with ethanol as solution in this experiment. The reaction products as the precursor obtained after reflux of the mixture solution were characterized by Fourier transform infrared spectroscopy analysis and thermogravimetric analysis, and the thin films on silicon substrate by SSCVD using the precursor were investigated by X-ray photoelectron spectroscopy analysis. All these provide evidence that the precursor has volatility and thermolysis properties suitable for SSCVD of ZnO thin films. It is interesting to note that the films are found to have a small amount of excess O, whereas ZnO films obtained by other techniques are often O deficient.  相似文献   

5.
ZnO thin films were fabricated using the spin coating method, ZnO nanowires by cathodically induced sol-gel deposition by the means of an anodic aluminum oxide (AAO) template, and ZnO nanorods with the hydrothermal technique. For thin film preparation, a clear, homogeneous and stable ZnO solution was prepared by the sol-gel method using zinc acetate (ZnAc) precursor which was then coated on a glass substrate with a spin coater. Vertically aligned ZnO nanowires which were approximately 65 nm in diameter and 10 μm in length were grown in an AAO template by applying a cathodic voltage in aqueous zinc nitrate solution at room temperature. For fabrication of the ZnO nanorods, the sol-gel ZnO solution was coated on glass substrate by spin coating as a seed layer. Then ZnO nanorods were grown in zinc nitrate and hexamthylenetetramine aqueous solution. The ZnO nanorods are approximately 30 nm in diameter and 500 nm in length. The ZnO thin film, ZnO nanowires and nanorods were characterized by X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). The NO2 gas sensing properties of ZnO thin films, nanowires and nanorods were investigated in a dark chamber at 200 °C in the concentration range of 100 ppb-10 ppm. It was found that the response times of both ZnO thin films and ZnO nanorods were approximately 30 s, and the sensor response was depended on shape and size of ZnO nanostructures and electrode configurations.  相似文献   

6.
Sensitivity to Combustible Gas for ZnO Thin Films   总被引:1,自引:0,他引:1  
A fine polycrystalline ZnO thin film with 0.3~0.6 μm grain size was obtained by sol-gel process and a consequential heat treatment at 500℃. The process of preparing ZnO thin film was analysed. The sensitivity and conductivity of ZnO thin films as combustible gas (CO, CH4,H2) sensor as well as the influence of catalyst and pH value of the precursor on its sensitivity were studied in detail. The structure characteristics of ZnO thin film by different process were irlvestigated by X-ray diffraction, thermal analysis and photoelectron spectrometer. The atomic ratio of Zn to O on the surface of ZnO thin film was found to be 1.14:1 measured from XPS result. The conductivity of the thin film increases greatly when doped with Al3+ ion but decreases while doped with Na+ ion  相似文献   

7.
A simple and cost-effective spray pyrolysis technique was employed to synthesize silver-doped zinc oxide (Ag–ZnO) thin films on the glass substrates from aqueous solutions of zinc acetate and silver nitrate precursors at 450 °C. The effects of Ag doping on structural, morphological, and gas-sensing properties of films were examined. The X-ray diffraction spectra of the Ag–ZnO films showed the polycrystalline nature having hexagonal crystal structure. Scanning electron microscopy (SEM) images of the pure ZnO films revealed the uniform distribution of the spherical grains (~80 nm size). Tiny Ag nanoparticles are clearly visualized in the SEM of Ag–ZnO films. The investigation of the effect of Ag doping on the gas-sensing properties of the Ag–ZnO revealed that the 15 % Ag-doped ZnO sample has the highest gas sensitivity (85 %) and excessive Ag doping in ZnO degraded the gas sensitivity. A possible mechanism of Ag–ZnO-based sensor sensitivity to the target gas is also proposed.  相似文献   

8.
Aligned single-crystal ZnO rod arrays with diameters ranging from 50 nm to 300 nm and length up to 10 microm have been synthesized on silicon substrate under open-air conditions using a combustion chemical vapor deposition (CVD) method. The ZnO rods grew in the direction of (0001) with six [1120] peripheral surface planes. A single ZnO rod solid-state gas sensor fabricated on an interdigitated electrode pattern demonstrated prompt response to ethanol vapor at 400 degrees C.  相似文献   

9.
The hierarchical ZnO nanostructures with 2-fold symmetrical nanorod arrays on zinc aluminum carbonate (ZnAl-CO3) nanosheets have been successfully synthesized through a two-step hydrothermal process. The primary nanosheets, which serve as the lattice-matched substrate for the self-assembly nanorod arrays at the second-step of the hydrothermal route, have been synthesized by using a template of anodic aluminum oxide (AAO). The as-prepared samples were characterized by XRD, FESEM, TEM and SAED. The nanorods have a diameter of about 100 nm and a length of about 2 μm. A growth mechanism was proposed according to the experimental results. The gas sensor fabricated from ZnO nanorod arrays showed a high sensitivity to ethanol at 230°C. In addition, the response mechanism of the sensors has also been discussed according to the transient response of the gas sensors.  相似文献   

10.
采用双槽电化学腐蚀法在p+单晶硅片表面制备介孔硅层(meso-PSlayer),然后用对向靶磁控反应溅射法在介孔硅表面沉积WO3纳米颗粒薄膜,在干燥空气中于400℃下保温4h进行退火热处理,制备出介孔硅基WO3纳米颗粒薄膜(WO3-PS)室温气敏元件.利用扫描电子显微镜(SEM)分析介孔硅层及WO3-PS的表面形貌,通过X射线衍射(XRD)研究WO3的结晶状态,测试WO3-PS气敏元件在室温下对NO2、NH3的气敏性能,并探讨了WO3-PS气敏元件的工作机理.实验结果表明,在介孔硅表面沉积WO3纳米颗粒薄膜可使介孔硅的气敏性能显著提高,其中在室温下对10×10^-6NO2的灵敏度由5提高至56,大大提高了介孔硅的灵敏度,并降低了其响应/恢复时间,提高了对NO2的选择性.  相似文献   

11.
Zinc oxide (ZnO) is a versatile material for different commercial applications such as transparent electrodes, piezoelectric devices, varistors, SAW devices etc because of its high piezoelectric coupling, greater stability of its hexagonal phase and its pyroelectric property. In fact, ZnO is a potential material for gas sensor applications. Good quality ZnO films were deposited on glass and quartz substrates by a novel CVD technique using zinc acetate as the starting solution. X-ray diffraction confirmed the crystallinity of the zinc oxide film and SEM study revealed uniform deposition of fine grains. Undoped ZnO films were used for detection of dimethylamine (DMA) and H2 at different temperatures by recording the change in resistivity of the film in presence of the test gases. The response was faster and the sensitivity was higher compared to the earlier reported ZnO based sensors developed in our laboratory. The main objective of this work was to study the selectivity of the ZnO film for a particular gas in presence of the others. The operating temperature was found to play a key role in the selectivity of such sensors.  相似文献   

12.
《Materials Letters》2005,59(8-9):1004-1007
Tetrapod-shaped ZnO nanopowders were prepared by the method of vapor-phase oxidation from metallic zinc as raw materials. The gas-sensing properties of thick film based on tetrapod-shaped ZnO nanopowders to volatile organic compounds (VOCs), benzene, toluene, xylene, alcohol and acetone were measured, and compared with that of commercial ZnO powders with granular shape. The results showed that tetrapod-shaped ZnO had the better gas-sensing properties: the maximum sensitivity temperature was reduced, the gas sensitivity was improved and the time of response–recovery was shortened. The differences in gas-sensing properties between the thick films were discussed in according to the morphological characteristics, size and agglomeration of raw powder as well as microstructure of sintered thick films.  相似文献   

13.
Olfactory sensing of specific volatile organic compounds released by bacterial pathogens is one of the unique ways for determining microbial contamination in packaged food products. This study reports the development and evaluation of zinc oxide-iron oxide (ZnO-Fe2O3) nanocomposite sensors to detect low concentrations of butanol, one of the VOCs specific to Salmonella contamination in packaged beef, at low operating temperature (100 degrees C). The ZnO-Fe2O3 sensor was developed using modified Sol-gel method on an interdigitated alumina substrate. The sensor thin film characterization confirmed a uniform layer of ZnO-Fe2O3 thin film formation with ZnO nanorods of 100 nm height. Also, ZnO-Fe2O3 nanocomposite sensor demonstrated repeatable responses and good sensitivity to butanol with an estimated lower detection limit of about 26 ppm at 100 degrees C.  相似文献   

14.
The paper presents the properties of zinc oxide thin films deposited on glass substrate via dip-coating technique. Zinc acetate dehydrate, ethanol and monoethanol amine were used as starting materials and N2 gas was used as thermal annealing atmosphere for film crystallization. The effect of withdrawal speed on the crystalline structure, morphology, zinc and nitrogen chemical states, optical, electrical and gas-sensing properties of the thin films has been investigated using X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, optical transmittance and photoreduction-ozone reoxidation data.  相似文献   

15.
Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 °C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the film grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.  相似文献   

16.
Synthesis of nanocrystalline zinc oxide thin films by sol gel spin coating technique and its application as ammonia gas sensor is presented in this paper. The synthesized sample is pure zinc oxide with hexagonal wurtzite structure. The lattice parameters are: a = 3.2568 Å and c = 5.210 Å. Average crystallite size is of the order of 58 nm. SEM studies show that growth of the film takes place with folded structure, increasing the open surface area of the film. Optical study revealed that band gap of ZnO is 3.25 eV with direct band to band transitions. Gas sensing characteristics showed that ZnO film is sensitive as well as fast responding to ammonia gas at 573 K. A high sensitivity for ammonia gas indicates that the ZnO films are selective for this gas. The rise time and recovery time are 25 and 80 s, respectively. The mechanism of gas sensing is explained adequately.  相似文献   

17.
To enhance the optical property of zinc oxide (ZnO) thin film, zinc sulfide (ZnS) thin films were formed on the interfaces of ZnO thin film as a passivation and a substrate layer. ZnO and ZnS thin films were deposited by atomic layer deposition (ALD) using diethyl zinc, H2O, and H2S as precursors. Investigations by X-ray diffraction and transmission electron microscopy showed that ZnS/ZnO/ZnS multi-layer thin films with clear boundaries were achieved by ALD and that each film layer had its own polycrystalline phase. The intensity of the photoluminescence of the ZnO thin film was enhanced as the thickness of the ZnO thin film increased and as ZnS passivation was applied onto the ZnO thin film interfaces.  相似文献   

18.
ZnO nanorods have been synthesized over etch-patterned Si (110) wafer using annealed silver thin film as growth catalyst. The growth of ZnO nanorods were performed by a two-step process. Initially, the deposition of Zn thin film was done on the annealed silver catalyst film over etch-patterned Si (110) substrate by thermal evaporation, and then annealed at 800°C in air. The etching of the patterned Si (110) wafers was carried out by 50% aqueous KOH solution. The samples were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and room temperature photoluminescence spectroscopy. ‘V’ shaped grooves with no undercut were formed after etching due to the anisotropic nature of the KOH etchant. The etch-patterned wafer was used to provide larger surface area for ZnO growth by forming ‘V’-grooves. This ZnO film may be predicted as a very good material for gas sensor.  相似文献   

19.
Gas-sensing performances can often be enhanced significantly once the size of sensing nanomaterials approaches a critical value of 15 nm. Here, we synthesize, by a simple hydrothermal method accompanied by the calcination process, ultrathin ZnO nanosheets with a thickness as thin as 10–13 nm. We find that the prepared zinc hydroxide carbonate precursor is largely agglomerated, yet transformed to the ultrathin ZnO nanosheets in a dispersive fashion after the calcination process. The as-prepared ultrathin nanosheets exhibit excellent gas-sensing functions to ethanol gas at the optimal temperature as low as 300 °C under the concentration of 50 ppm, rendering them a promising sensing material for the on-site detection of ethanol.  相似文献   

20.
通过在Al2O3衬底上粉末溅射ZnO做出了气敏特性和稳定性较好的ZnO薄膜气敏元件,实现ZnO薄膜的实用化,表明了ZnO是除SnO2外又一种新的气敏基材料.文中还对ZnO薄膜有关气敏特性和元件的气敏电流IG随酒气浓度C变化的规律进行了介绍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号