首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electro-optic sensor capable of detecting electric fields with a high degree of sensitivity and linearity is fabricated using optical D-fiber. The slab coupled optical sensor utilizes weak coupling and long evanescent interaction with a lithium niobate waveguide. Transmission dips from mode resonances have a linewidth of 0.12 nm and a Q factor of approximately 13,000. These sharp resonances improve device sensitivity and are achieved due to the unique fabrication process possible with D-shaped fibers. The sensor deviates <0.1% from linearity while monitoring fields between 200 V/m and 20 kV/m and promises high sensitivity to fields well beyond that range.  相似文献   

2.
Using the power flow equation, the state of mode coupling in 100-400 μm core step-index silica optical fibers is investigated in this article. Results show the coupling length L(c) at which the equilibrium mode distribution is achieved and the length z(s) of the fiber required for achieving the steady-state mode distribution. Functional dependences of these lengths on the core radius and wavelength are also given. Results agree well with those obtained using a long-established calculation method. Since large core silica optical fibers are used at short distances (usually at lengths of up to 10 m), the light they transmit is at the stage of coupling that is far from the equilibrium and steady-state mode distributions.  相似文献   

3.
Gafsi R  Lecoy P  Malki A 《Applied optics》1998,37(16):3417-3425
A stress optical fiber sensor was manufactured and tested. It uses light coupling between two parallel and laterally fused, all-silica multimode optical fibers along a cladding length of a few centimeters. This sensor is dedicated to the measurement of high values of stress. A theoretical model was developed using the mode coupling and the perturbation theory to calculate the global coupling coefficient of light. A serial optical fiber sensor network interrogated by the time-division multiplexing method was realized and tested. The major applications of this sensor are control and monitoring of civil engineering structures and concretes.  相似文献   

4.
A narrowband luminescent coating for germicidal 254-nm ultraviolet optical fiber sensors has been developed. A mixture of phosphor and epoxy is used for this coating. The luminescent-clad sensing principle uses a fiber, which has had its cladding and jacket both removed, and a photoluminescent coating replacing the cladding. As the coating luminesces, part of the emission is coupled to the fiber core through evanescent wave coupling. The combined absorption spectrum of the phosphor and the transmission spectrum of the epoxy result in a narrow sensitivity band of wavelengths being detected, centered around 254 nm. The absorption of the 254-nm radiation incident on the coating is emitted as visible light in the optical fiber sensor. This paper describes the development and testing of this narrowband coating using a spectrophotometer to examine its responsivity, and a luminescent-coated optical fiber sensor is compared with a UV photodiode when illuminated by a UV lamp. This optical fiber sensor monitors the output of UV lamps for stabilization and control purposes.  相似文献   

5.
设计了一种三角晶格结构的全内反射型光子晶体光纤,并在其包层孔内分别填充折射率为n=1.55~3.35(△n=0.3)的介电材料,使其等效为全固态光子带隙型光子晶体光纤,利用全矢量平面波展开法对其带隙特性进行分析,发现随着折射率的增加,光子带隙的位置逐渐向长波方向移动,导模也越来越少。设计一种工作波长为1550nm的全固态光子带隙型光子晶体光纤,计算得到其对应的归一化传播常数β=8.2时,导模的宽度大约为100nm。该光纤在光电转换或者电光转换等方面具有潜在的应用价值。  相似文献   

6.
Using the power-flow equation, we have examined the state of mode coupling in strained and unstrained step-index plastic optical fibers. The strained fibers show much stronger mode coupling than unstrained fibers of the same types. As a result, the coupling lengths where equilibrium mode distribution is achieved and the lengths of fiber required for achieving a steady-state mode distribution for strained fibers are much shorter than the corresponding lengths for unstrained fibers.  相似文献   

7.
Using the power-flow equation, we have examined the state of mode coupling in step-index plastic optical fibers with different numerical apertures. Our results confirm that the coupling rates vary with the coupling coefficient of the fibers as the dominant parameter, especially in the early stage of coupling near the input fiber end. However, we show that the fiber's numerical aperture has a significant influence on later stages of this process. Consequently, equilibrium mode distribution and steady-state distribution are achieved at overall fiber lengths that depend on both of these factors. As one of our examples demonstrates, it is possible for the coupling length of a high-aperture fiber to be similar to that of a low-aperture fiber despite the three-times-larger coupling coefficient of the former.  相似文献   

8.
A switchable mode-locking fiber laser is demonstrated by means of a monolayer graphene saturable absorber (SA) based on a D-shaped fiber. The monolayer graphene, which is grown by chemical vapor deposition, is transferred onto the D-shaped fiber and then the light–graphene interaction via the evanescent field of the fiber is enhanced greatly. Using such a graphene-based SA, the single-wavelength mode locking can be switched from 1531.5 to 1559.1 nm by appropriately adjusting the polarization controller (PC). In addition, the stable dual-wavelength mode-locking operation is also observed at the proper state of PC.  相似文献   

9.
Dong L  Ortega B  Reekie L 《Applied optics》1998,37(22):5099-5105
We have studied both theoretically and experimentally the effect of grating tilting on the coupling between the fundamental core mode and the cladding modes in an optical fiber Bragg grating. The coupling is shown to be very sensitive on the tilting angle. It is also shown that tilting angle has to be minimized in fibers with designs to suppress the coupling between the fundamental core mode and the cladding modes. We have also studied the single, strong loss peak accompanying the Bragg reflection peak in depressed-cladding fibers, thus showing a good agreement between behavior that is measured and that is predicted theoretically.  相似文献   

10.
El-Maksoud RH  Omar MF 《Applied optics》2011,50(31):5957-5965
Multiple-beam Fizeau fringes are formed across a liquid silvered wedge when it is illuminated by a collimated beam of monochromatic light. Inserting the fiber into the liquid silvered wedge causes the fringes to shift across the fiber region with respect to the fringes at the liquid region. Fringe shift is a function in the geometry of the different regions of the fiber and the refractive index profile of the fiber. In this paper, theoretical models for the fringe shift across double-clad fibers (DCFs) with rectangular, elliptical, circular, and D-shaped inner cladding are developed. An algorithm to reconstruct the linear and nonlinear terms of the refractive index profile of the DCF is outlined. Numerical examples are provided and discussed.  相似文献   

11.
The core-cladding boundary in step-index plastic optical fibers is imperfect. Surface irregularities locked in during the manufacturing process couple the guided modes by reflecting them in directions that deviate unpredictably from the expected directions. This causes an additional loss as the multiple reflections from surface elements with directions randomized around the nominal for the cylinder transfer the power to the radiation modes that are carried away from the core into the cladding. We model such loss and mode coupling by ray tracing. The irregular core-cladding interface is represented by nominally cylindrical surface elements with orientations randomly perturbed around two geometric axes. The results show mode coupling and relative loss per unit fiber length caused by the core-cladding interface irregularities. The loss is high close to the input fiber end where mode coupling is intense. It drops farther along the fiber as mode coupling slows down and stabilizes where the equilibrium mode distribution is reached.  相似文献   

12.
A distributed sensing system for apolar hydrocarbons is presented which is built from a polymer-clad silica fiber adapted to an optical time domain reflectometer (OTDR) set-up. OTDR measurements allow locating and detecting chemicals by measuring the time delay between short light pulses entering the fiber and discrete changes in the backscatter signals that are caused by local extraction of hydrocarbons into the fiber cladding. The light guiding properties of the fiber are affected by interaction of the extracted chemicals with the evanescent wave light field extending into the fiber cladding. Distributed sensing of pure liquid hydrocarbons (HC) and aqueous HC solutions with a commercially available mini-OTDR adapted to sensing fibers of up to 1km length could be demonstrated. A pulsed laser diode emitting at the 850 nm telecommunication wavelength was applied in the mini-OTDR to locate the HCs by analyzing the step drop (light loss) in the backscatter signal, which is induced by local refractive index (RI) increase in the silicone cladding due to the extracted HC. The prototype instrument can be applied for monitoring hydrocarbon leakage in large technical installations, such as tanks, chemical pipelines or chemical waste disposal containments.  相似文献   

13.
The pump absorption properties in co-linear side-pumping schemes composed of a double-clad fiber with special inner cladding and a coreless pump fiber were investigated using the beam propagation method. The absorption efficiency of high-order modes is higher than that of low-order modes. The pump absorption efficiency enhances with the growth of the ratio of inner cladding diameter of main fiber to the diameter of pump fiber. Furthermore, the pump absorption with a non-circular inner cladding is higher than that with a circular inner cladding. In addition, the absorption in the system with a D-shaped inner cladding is hardly affected by the arrangement of the main fiber and pump fiber.  相似文献   

14.
The thin, long length and high smoothness silica photonic nanowires and taper optical fiber were fabricated using a simple and low cost chemical etching method. A two-steps wet etch process were used consisting of etching with 30% HF acid to remove cladding and 24% HF acid to decrease fiber core diameter. An approach for on-line monitoring of etching using 1300 nm light power transmitted in the optical fiber was used to determine the diameter of the remaining core and showed a transition between two different operation regimes of nanofiber from the embedded regime, where the mode was isolated from the environment, to the evanescent regime. The data indicated that the diameter of the silica fiber decreased linearly for both 30% and 24% HF acid with 1.2 and 0.1 μm/min grad diameter, respectively at room temperature, and more than 70% of the mode intensity could propagate outside fiber when the core diameter was less than 1 μm. The results of fiber taper showed that the fiber was tapered by a factor of 20 while retaining a thin core structure and leaving about more than 85% of core structure.  相似文献   

15.
We compare the filtering capabilities of two infrared fibers developed to achieve a high rejection ratio of the higher order modes in order to obtain compact modal filters devoted to stellar interferometry. Two types of double-clad fibers are studied: a fiber with a second thin absorbing cladding and a fiber with a second thick absorbing cladding closer to the fiber core; both are single mode around the CO(2) band (10.6 μm). We present the single-mode spectral domain and the nulling capabilities of both fibers for different fiber lengths, comparing simulations with experimental results. We show that the filtering capabilities are improved when the absorbing clad is closer to the fiber core, as the propagation distance needed to filter out these modes is shorter. Thus, to obtain high rejection ratios in compact devices, an absorbing cladding close to the core of the fiber is compulsory in order to suppress cladding modes that could eventually recouple into the waveguide. We present an empirical model that allows determining the minimum filter length, considering only one effective leaky mode with low attenuation, which considerably simplifies the theoretical studies.  相似文献   

16.
Low-attenuation waveguides based on the propagation of long-range surface plasmon polaritons (LRSPPs) along thin Au stripes embedded in low absorption perfluorocyclobutane (PFCB) polymer are presented. A new low in propagation loss of <2.0 dB/cm was achieved for a 4 microm wide waveguide by optimizing the cladding material and fabrication process. The coupling efficiency between the LRSPP waveguide and the optical fiber is studied theoretically and experimentally for different widths of Au stripes and various cladding thicknesses. Lower coupling loss is found when the cladding thickness is close to the mode diameter of the butt-coupled fiber. Based on the 2D distribution of SPP modes calculated by a finite-difference mode solver, a symmetric structure of multilayer claddings with different refractive indices is proposed to optimize device insertion loss.  相似文献   

17.
Fibers exhibiting flattened and decreasing dispersion are important in nonlinear applications. Such fibers are difficult to design, particularly in soft glass. In this work, we develop a preliminary design of a highly nonlinear tapered hybrid microstructured optical fiber (TH-MOF) with chalcogenide glass core and tellurite glass microstructure cladding. We then numerically studied its dispersion, loss, and nonlinearity-related optical properties under fundamental mode systematically using the infinitesimal method. The designed TH-MOF exhibits low chromatic dispersion that is similar to a convex function with two zero-dispersion wavelengths and decreases with fiber length from 2 to 5 μm band. The potential use of the TH-MOF in nonlinear applications is demonstrated numerically by a supercontinuum spectrum of 20 dB bandwidth covering 1.96–4.76 μm generated in 2-cm-long TH-MOF using near 3.25-μm fs-laser pump.  相似文献   

18.
Optical fiber sensors using fluorescent probes distributed along the fiber cladding are of great interest for monitoring physical and chemical properties in their environment. The location of an emitting fluorophore along a fiber can be determined by measuring the time delay between a short, exciting laser pulse propagating in the fiber core and the returning fluorescence pulse. However, fluorescence lifetimes limit the spatial resolution, since a minimum separation of the fluorophores is required to resolve returning light pulses. For many applications, a closer spacing of sensor regions is desirable. We present a new method for the readout of closely packed fluorescent chemosensors located in the cladding of an optical fiber. By using a second fiber as an optical delay line, the minimum spacing between adjacent sensor regions can be well below the fluorescence lifetime limit. Since the coupling between the two fibers is evanescent, the attenuation of the excitation pulse is low, making long arrays of sensor regions feasible. This is particularly important since the one-dimensional combinatorial chemistry method developed by us allows for efficient preparation of diverse linear arrays. Detection sensitivities of 10(-7) mol/L are demonstrated, with the potential for significant improvement.  相似文献   

19.
The first-order paraxial approximation is used to obtain the distributions of the electric and magnetic fields for the core and cladding hybrid fiber modes. The coupling coefficients of these modes are found for fibers subject to twist. The longitudinal electric field component determines the mode coupling in twisted fibers. It is shown that in the first-order paraxial approximation the cladding hybrid modes propagating in a twisted fiber rotate along the direction of the twist at the same rate as the core mode, independently of the azimuthal and radial mode numbers. Four hybrid modes constituting one linearly polarized mode have different longitudinal components, and the corresponding cladding-mode resonances of a long-period fiber grating undergo different shifts owing to different mode self-coupling coefficients. This results in the removal of mode degeneracy and splitting of resonances of long-period gratings in twisted fibers.  相似文献   

20.
The processes of surface plasmon resonance excitation in a bent single-mode optical fiber with a metallized cladding have been studied experimentally. It is shown that, for a certain combination of the bending radius of an optical fiber and the thickness of a metal film, a strong coupling between the fundamental and plasmon–polariton mode is achieved through a whispering gallery mode supported by the fiber cladding, which leads to the formation of a resonance dip with a depth of ~30 dB or more in the transmission spectrum of an optical fiber loop. The position of the dip depends strongly on the ambient refractive index, which provides the possibility of refractometric measurements with a spectral sensitivity of ~5 μm/RIU and a resolution of ~4 × 10–6. Limits of measurement of the refractive index are determined by the operating spectral range and the bending radius of the optical fiber and are 1.42–1.44 for the setup used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号