首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and magnetic properties of Co(1-x)Zn(x)Fe2O4 ferrites (Co-Zn ferrites) are investigated in a narrow compositional range around x = 0.6, which is of interest because of applications in magnetic fluid hyperthermia. The study by x-ray and neutron diffraction, M?ssbauer spectroscopy and magnetization measurements is done on nanoparticles prepared by the coprecipitation method and bulk samples sintered at high temperatures. In spite of the known preference of Zn2+ for tetrahedral (A) sites and Co2+ for octahedral [B] sites, the cations are distributed nearly evenly over the two sites of spinel structure and there is also a variable number of [B] site vacancies (see text), making cobalt ions trivalent. In particular for x = 0.6, the cationic distribution is refined to [Formula: see text] and [Formula: see text] for the 13 nm particles (T(C) = 335 K) and bulk sample (T(C) = 351 K), respectively.  相似文献   

2.
Nanostructured Mn(1-x-y)Co(x)Ni(y)O2 metal oxides are synthesized by one-pot hydrothermal reaction at low temperature. From powder X-ray diffraction and field emission-scanning electron microscopic analyses, it is found that the crystal structure and crystal morphology of the present materials are tunable by the control of the composition of precursor. 1D nanowires with alpha-MnO2-type structure are prepared with low substitution rate of Co and Ni, while the increase of substituent contents leads to the formation of delta-MnO2-structured 3D nanospheres consisting of 2D nanoplates. According to X-ray absorption near edge spectroscopy and chemical analyses, mixed valent Co(III)/Co(IV) and divalent Ni(II) ions are stabilized in the octahedral Mn sites of alpha-MnO2- and delta-MnO2-structures. The electrochemical measurements clearly demonstrate that the present nanostructured materials show promising electrode performances for lithium secondary batteries.  相似文献   

3.
采用溶胶凝胶自燃烧法制备了钴掺杂的Mn-Zn铁氧体,研究了少量钴掺杂对其结构和磁性质的影响。利用X射线衍射仪对制备的粉末测试发现,Mn0.4Zn0.6-xCoxFe2O4系列铁氧体都具有纯净的尖晶石结构。晶格常数和饱和磁化强度都随着钴替代量的增加而增加。μi-T线具有两个磁导率最大的峰值并且磁导率的第二峰值随着钴的增加向低温移动。磁导率的第二峰值的温度可以通过改变钴含量来调节。基于铁氧体中磁晶各向异性补偿模型,阐明了少量钴掺杂对铁氧体磁性质影响的作用机理。  相似文献   

4.
The mixed ferrites of Ni–Zn–Cu are synthesized using ceramic double sintering technique. Cu and Ni are substituted in steps of x=0.1 at the interstitial sites of Fe. Powders of mixed ferrites of Ni–Zn–Cu are studied using XRD. The mixed ferrites show a single phase and face center cubic structure for all concentrations. The substitution of Cu and Ni are confirmed from the variation of lattice constant. The cation distribution in the A and B sites of the ferrites is estimated. Mixed ferrites of Ni–Zn–Cu are characterized using a.c. conductivity and magnetic susceptibility methods. The variation of activation energy, magnetic moment and Curie temperature with concentration of Fe ions explains the alterations of the energy levels of d bands. Hopping of charge carriers and the presence of different ionic states of Ni, Cu, and Fe ions are discussed using the FTIR and EPR spectra.  相似文献   

5.
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.  相似文献   

6.
Both structural refinement using X-ray powder diffraction data and energy calculation using quantum mechanics were used to determine the site preference and the amount of Gd in the host lattice of Gd doped Fe3O4 [Gd(x)Fe(3-x)O4 (x = 0.1)] nanopowder prepared by the sonochemical method. Among possible cation-disorder models, the model proposed by structural refinement, in which Gd ions might preferentially occupy the octahedral sites in Gd doped Fe3O4 having the inverse spinel structure, was confirmed by geometry energy calculation using a first-principle based on the density-functional theory. The final converged weighted R-factor, R(wp), and the goodness-of-fit indicator, S (= R(wp)/R(e)) were 6.73% and 1.22, respectively. The occupancy of Gd ions occupying octahedral sites was 0.04(2).  相似文献   

7.
王静  邓彤  杨欢  戴玉杰 《无机材料学报》2005,20(5):1059-1065
采用氧化-沉淀法在室温下合成了不同钴含量的铁酸盐. 不同反应时间样品的IR和XRD谱图分析表明, 富铁铁酸钴是通过中间体绿锈形成的. 通过调节初始溶液中Co/Fe比(Co/Fe分别为: 1/20、1/15、1/10、1/7、1/5、1/3)合成了钴含量分别为Co/Fe=0.05、0.06、0.08?、0.12、0.17、0.18的富铁铁酸钴, 并通过XRD和化学测定分析了上述铁酸盐的化学计量和结构, 并结合Mossbauer谱进一步分 析了产物形成的过程. 实验结果表明: 在室温条件下, 随初始溶液中钴含量的增加, 钴在尖晶石结构中占据八面体空隙中Fe{3+的位置, 且钴含量的增加不利于尖晶石结构的形成, 游离 于绿锈结构以外的钴的化合物中包含了非磁性Fe(Ⅲ)的氧化物.  相似文献   

8.
Nonstoichiometric Co3O4 films have been investigated by the XPS technique. Analysis of binding energies and intensities of the Co 3s, Co 2p and O 1s core-level peaks and valence band spectra has led to a conclusion that, in contrast to bulk samples, the high-spin configuration of Co(III) ions in nonstoichiometric Co3O4 films is stabilized in the spinel octahedral sublattice. The relation between the electronic structure and the catalytic activity of nonstoichiometric cobalt oxide is discussed.  相似文献   

9.
In-situ near edge X-ray absorption fine structure spectroscopy was performed to monitor the oxidation states of Co and CoPt nanoparticles (NPs) of 4 nm size in the presence of H(2) and O(2) in the pressure range of 1 bar and 36 Torr respectively. Platinum helps the rapid reduction of cobalt oxides in hydrogen at a rather low temperature (38 °C). In addition, reversible changes of the oxidation states of cobalt in the Co and CoPt NPs as a function of cycling oxygen pressure (in the range of millitorr to 36 Torr) are quantified and compared. The role of Pt in the process of Co reducing and oxidizing was explored. Our findings permit the prediction of the cobalt oxidation states as the reaction conditions are altered. The experimental results also suggest the presence of tetrahedral structure of Cobalt oxide that differs from the Co(3)O(4) spinel structure.  相似文献   

10.
以草酸和金属硝酸盐为原料,用低热固相反应法合成了纳米(Ni0.58Cu0.2Zn0.22)Fe1.96O4尖晶石型铁氧体,借助FT-IR、DSC-TG、XRD、TEM以及SEM等技术对固相反应过程和样品进行了研究及表征.FT-IR研究表明,草酸和金属硝酸盐在研磨过程中发生低热固相反应,生成金属草酸盐前驱体;FT-IR和XRD分析表明,前驱体经不同温度焙烧后得到单一尖晶石相的NiCuZn铁氧体粉末;依据TEM和SEM表征证明,前驱体在450℃分解1h后铁氧体粒径约为30~40nm,铁氧体于900℃烧结为陶瓷体后,晶粒约为2~4μml,烧结致密,磁谱测量表明,900℃烧结样品的磁导率为210,截止频率为28MHz.  相似文献   

11.
以Fe2O3、ZnO和NiO为原料,采用高温固相法合成NixZn1-xFe2O4(x=0~0.9)铁氧体,用差热分析、X射线衍射等测试技术对样品进行分析研究。结果表明:各产物中没有发现单一相的NiO、ZnO和Fe2O3存在,各产物均属立方晶系尖晶石结构且结晶完整。随着Ni的摩尔分数x的增加,衍射峰逐渐向高角度偏移,根据晶面间距公式计算可知,随着Ni摩尔分数x的增加,样品晶体晶胞参数逐渐减小,均是由于Zn2+、Fe3+和Ni2+3种金属离子大小与相对含量的变化引起的。  相似文献   

12.
采用聚丙烯酰胺凝胶法制备了尖晶石型纳米晶Ni0.4CoxZn0.6-xFe2O4(x=0、0.2、0.4),同时考察了铁氧体的电磁性能.由X射线衍射(XRD)可知,随着x的增大,Ni0.4CoxZn0.6-xFe2O4的晶格常数从0.838 4 nm减小到0.835 7 nm.透射电镜(TEM)结果表明,Ni0.4Zn0.6Fe2O4铁氧体粒子的平均直径约为20 nm.Ni0.4CoxZn0.6-xFe2O4在8.2~12.4 GHz的测试频率范围内具有介电损耗和磁损耗.在频率为9.0 GHz时,Ni0.4CoxZn0.6-xFe2O4(x=0.4)复介电常数虚部的最大值达到19.6.随着X值的增加,复数磁导率虚部的共振吸收峰向高频移动.制备的复合物可以被广泛地用于抑制电磁辐射和吸收雷达波等领域.  相似文献   

13.
This paper demonstrates the potential of near-infrared (NIR) electronic spectroscopy in nondestructive monitoring of a chemical reaction of inorganic functional material. For this purpose NIR spectra in the 12,000-4000 cm(-1) region were measured for high reflective green-black (HRGB) pigments (Co(0.5)Mg(0.5)Fe(0.5)Al(1.5)O(4)) calcined at 1000, 1100, and 1200 °C and pigments with the same components as HRGB but calcined at different temperatures (500-900 °C) (hereafter, called "Pigments A") . NIR spectra of their components such as Co(3)O(4), MgO, Fe(2)O(3), and Al(2)O(3) were also measured. The NIR spectra of Pigments A show two major broad bands. One arises from a (4)A(2)→(4)T(1) (T(h)) d-d transition of Co(II) in the 9000-6000 cm(-1) region. The other band in the 12,000-9000 cm(-1) region is assigned to a foot of the charge-transfer (CT) band of Fe(2)O(3). The Co(II) band contains three component bands that are characteristic of a spinel structure. A shoulder arising from (A(1-x)B(x))(Th)(A(x)B(2-x))(Oh)O(4) (A≡Co, Mg, B≡Fe, Al; inverse spinel structure) emerges near 5900 cm(-1) in the spectra of Pigments A calcined in the temperature range of 700-900 °C, indicating that the Pigments A calcined in this temperature range assume an inverse spinel structure. When the calcination temperature is above 1000 °C, the final product, HRGB, is produced. This is confirmed from the fact that HRGB shows peaks characteristic of a spinel structure that have different wavenumbers from those of the corresponding peaks of Pigments A. Wide-angle X-ray diffraction (WAXD) patterns were also measured for HRGB, Pigments A, and their components. Based on the NIR and WAXD data we investigated calcination-temperature-dependent crystal structural changes of the components. We also developed partial least squares (PLS) calibration models for the 9000-6000 cm(-1) region of the NIR spectra of HRGB and Pigments A. The score plot of latent variable (LV) 2 of the calibration model for calcination temperature demonstrates clearly the existence of an intermediate of the calcination reaction, which may be (A(1-x)B(x))(Th)(A(x)B(2-x))(Oh)O(4) (A≡Co, Mg, B≡Fe, Al).  相似文献   

14.
Information on local crystal and electronic structure with elemental specificity is of paramount importance to understand many scientific problems. X-ray Absorption Spectroscopy (XAS) is particularly suited for this. Spinel structured ferrites exhibit a range of electrical and magnetic properties that make them particularly appealing for many technological applications such as permanent magnets, microwave absorbers, catalysts, and chemical sensors. Since the peculiar properties of ferrites are strictly related to the distribution of cations between octahedral and tetrahedral sites in the spinel structure, the control of cation distribution provides a means to tailor their properties. An EXAFS study of Co x Zn1?x Fe2O4 nanoparticles is presented here. Using this technique, the information about the site distribution for Fe and Co/Zn is determined. The information obtained on the cation distribution is important to understand the microstructure of spinel ferrites which is useful to study their effects on structural, electrical, and magnetic properties.  相似文献   

15.
CoxMg1−xAl2O4 (x = 0–0.8) nanoparticles were synthesized by sol–gel method, and characterized by X-ray powder diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy and 27Al solid-state NMR spectroscopy were performed to study the chemical environments of cations in the nanoparticles as a function of cobalt content and annealing temperature. The results show that the crystallite size of the particles is about 20–40 nm. Besides the tetrahedral and octahedral coordinations, the second octahedrally coordinated Al3+ ions are observed in the samples. The inversion parameter (two times the fraction of Al3+ ions in tetrahedral sites) decreases with the increase of annealing temperature and cobalt content. The fraction of octahedral Mg2+ decreases with the increase of Co concentration. The absorption spectra indicate that Co2+ ions are located in the tetrahedral sites as well as in the octahedral sites in the nanoparticles. The intensity of the absorption peak corresponding to octahedral Co2+ ions (300–500 nm) decreases with increasing annealing temperature.  相似文献   

16.
A series of ZnFe(2-x)Al(x)O(4) spinel type catalysts prepared by sol-gel method have been characterized and tested for catalytic wet oxidation (CWO) of phenol with pure oxygen. The iron species existed in these materials as aggregated iron oxide clusters and Fe3+ species in octahedral sites. With a decrease in iron content the concentration of the first iron species decreased and the latter increased. Complete phenol conversions and high chemical oxygen demand (COD) removals were obtained for all catalysts during phenol degradation at mild reaction conditions (160 degrees C and 1.0 MPa of oxygen pressure). Increasing with the concentration of Fe3+ species in octahedral sites, induction period became significantly shortened. After phenol was completely degraded, the concomitant recycling of the leaching Fe3+ ions back to the catalyst surface was observed, and in this case it is possible to perform successful CWO reactions with some cycles. It is also suggested that during the reaction the Fe3+ cations coordinated in octahedral sites in the ZnFe(2-x)Al(x)O(4) catalysts are resistant to acid leaching, but the reduced Fe2+ cations become much more labile, leading to increased Fe leaching.  相似文献   

17.
Smalt was commonly used as a pigment by artists between the 16th and 18th centuries. It is a powdered blue potash glass colored by cobalt ions and often degrades causing dramatic changes in the appearance of paintings. The aim of the work presented in this paper was to investigate the changes in the structure and environment around the cobalt ion on deterioration, to further our understanding of the basis of the loss of color. Particles of well-preserved and altered smalt in microsamples from paintings in the National Gallery, London, and the Louvre, Paris, were analyzed using synchrotron micro-X-ray absorption spectroscopy at the Co K-edge. X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) measurements showed that in intense blue particles the cobalt is predominantly present as Co(2+) in tetrahedral coordination, whereas in colorless altered smalt the Co(2+) coordination number in the glass structure is increased and there is a shift from tetrahedral toward octahedral coordination. The extent of this shift correlates clearly with the alkali content, indicating that it is caused by leaching of potassium cations, which act as charge compensators and stabilize the tetrahedral coordination of the cobalt ions that is responsible for the blue color.  相似文献   

18.
Nickel substituted Barium ferrites is synthesized by citrate gel method. Nickel which is transition metal used to tailor the properties of the Ba spinel ferrites. The characterization techniques such as thermogravimetry–differential thermal analysis (TG-DTA), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), ultra-violet diffuse-reflectance spectroscopy (UV-DRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), Raman analysis and direct current (DC) electrical conductivity are used to investigate various properties. XRD and rietveld refinement confirmed the existence of orthorhombic as well as cubic phase with the decrease in lattice parameters in orthorhombic phase. FTIR spectra confirmed the presence of absorption bands for tetrahedral and octahedral sites. Tauc’s plots accredited the increase in band gap with increase in Ni content. The magnetic hysterisis loop exhibited large variation in coercivity and remanence. Increased Yafet-Kittel (Y-K) angle indicated redistribution of ions amongst the sites strenthening the A-B exchange interactions. DC electrical conductivity observed the conductive switching from n-type to p-type. Thermally activated charge carriers and hopping of electrons boost drift mobility. The activation energy of conduction is observed in the range of 0.40 to 0.85 eV. Raman peaks confirmed formation of orthorhombic as well as cubic phase.  相似文献   

19.
Spinel ferrites are commercially important because of their excellent magnetic and catalytic properties. The study by Low Energy Ion Scattering (LEIS) can reveal atomic scale information on the surface. The surface of selected spinel ferrites was investigated by LEIS. It has been found that it is the octahedral sites which are preferentially exposed on the surface of the spinel ferrites. So the probable planes which are exposed on spinel ferrite surfaces are D(110) or B(111). This prediction using LEIS gives scope for tailor-making compounds with catalytically active ions on the surface for various catalytic reactions.  相似文献   

20.
采用溶胶凝胶自燃烧法制备了Mn0.4Zn0.6-xCoxFe2O4铁氧体,研究了钴掺杂对其结构和磁性质的影响。将自燃烧法制备的粉末进行1,150℃烧结。利用X射线衍射仪对制备的粉末测试发现,Mn0.4Zn0.6-xCoxFe2O4系列铁氧体都具有尖晶石结构。利用VSM对铁氧体进行磁性测试,发现饱和磁化强度与晶格常数的变化规律一致,在钴含量为0.2时,都取得最大值。通过μi-T曲线发现,初始磁导率随着钴含量的增加而降低,居里温度是一个常数。而且,钴含量可以调节磁导率的温度稳定性,在钴含量为0.3时,磁导率具有优良的温度稳定性。基于铁氧体中离子分布的原理,阐明了钴掺杂对铁氧体磁导率温度稳定性的作用机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号