首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
报道了毫米波应用的0.15μm场板结构GaN HEMT。器件研制采用了76.2mm(3英寸)SiC衬底上外延生长的AlGaN/GaN异质结构材料,该材料由MOCVD技术生长并引入了掺Fe GaN缓冲层技术以提升器件击穿电压。器件栅脚和集成了场板的栅帽均由电子束光刻实现,并采用栅挖槽技术来控制器件夹断电压。研制的2×75μm栅宽GaN HEMT在24V工作电压、35GHz频率下的负载牵引测试结果显示其输出功率密度达到了4W/mm,对应的功率增益和功率附加效率分别为5dB和35%。采用该0.15μm GaN HEMT技术进行了Ka波段GaN功率MMIC的研制,所研制的功率MMIC在24V工作电压下脉冲工作时(100μs脉宽、10%占空比),29GHz频点处饱和功率达到了10.64W。  相似文献   

2.
研制出0.2um栅长 V型栅槽AlGaN/GaN HEMT。该0.2um栅槽是由0.6um 的光刻设计尺寸经过SiN各项同性淀积和各项异性刻蚀而形成。该0.2um栅长V型栅槽AlGaN/GaN HEMT最大截止频率为35GHz,最大震荡频率60GHz。在10GHz频率和20V漏偏压下,该器件最大输出功率达到4.44 W/mm ,功率附加效率49%。  相似文献   

3.
罗俊  郝跃 《微电子学》2019,49(2):256-261
为了在获得高击穿电压的同时实现增强型器件,对AlGaN/GaN/AlGaN双异质结HEMT进行了栅槽刻蚀,得到阈值电压为0.6 V的增强型HEMT。对器件特性的变化机理进行了分析,发现刻蚀引入的陷阱态使器件的击穿性能降低。采用变频电导法,定量研究了反应离子刻蚀在AlGaN/GaN/AlGaN双异质结HEMT中引入的陷阱态。研究表明,刻蚀工艺在双异质结HEMT中引入了大量的浅能级陷阱,这些陷阱的能级主要分布在0.36~0.40 eV。  相似文献   

4.
研制了高电流增益截止频率(fT)的InAlN/GaN高电子迁移率晶体管(HEMT).采用金属有机化学气相沉积(MOCVD)再生长n+GaN非合金欧姆接触工艺将器件源漏间距缩小至600 nm,降低了源、漏寄生电阻,有利于改善器件的寄生效应;使用低压化学气相沉积(LPCVD)生长SiN作为栅下介质,降低了InAlN/GaN HEMT栅漏电;利用电子束光刻实现了栅长为50 nm的T型栅.此外,还讨论了寄生效应对器件fT的影响.测试结果表明,器件的栅漏电为3.8 μA/mm,饱和电流密度为2.5 A/mm,fT达到236 GHz.延时分析表明,器件的寄生延时为0.13 ps,在总延时中所占的比例为19%,优于合金欧姆接触工艺的结果.  相似文献   

5.
考虑到实际应用对可靠性、设计成本及能耗的要求,增强型GaN高电子迁移率晶体管(HEMT)器件比传统耗尽型GaN HEMT器件优势更显著。目前有许多方法可以实现增强型GaN HEMT器件,如使用p型栅技术、凹栅结构、共源共栅(Cascode)结构、氟离子处理法、薄势垒AlGaN层以及它们的改进结构等。分别对使用以上方法制备的增强型GaN HEMT器件进行了综述,并对增强型GaN HEMT器件的最新研究进展进行了总结,探索未来增强型GaN HEMT器件的发展方向。  相似文献   

6.
基于凹槽栅增强型氮化镓高电子迁移率晶体管(GaN HEMT)研究了不同的栅槽刻蚀工艺对GaN器件性能的影响。在栅槽刻蚀方面,采用了一种感应耦合等离子体(ICP)干法刻蚀技术与高温热氧化湿法刻蚀技术相结合的两步法刻蚀技术,将AlGaN势垒层全部刻蚀掉,制备出了阈值电压超过3 V的增强型Al_2O_3/AlGaN/GaN MIS-HEMT器件。相比于传统的ICP干法刻蚀技术,两步法是一种低损伤的自停止刻蚀技术,易于控制且具有高度可重复性,能够获得更高质量的刻蚀界面,所制备的器件增强型GaN MIS-HEMT器件具有阈值电压回滞小、电流开关比(ION/IOFF)高、栅极泄漏电流小、击穿电压高等特性。  相似文献   

7.
基于金属有机化学气相沉积(MOCVD)生长的高质量AlGaN/GaN异质结构材料,采用选择性栅挖槽结合栅介质工艺实现GaN增强型/耗尽型(E/D)HEMT器件的集成,应用直接耦合场效应管逻辑(DCFL)设计并研制GaN E/D HEMT集成逻辑门电路。通过对GaN E/D器件性能以及逻辑门电路性能的分析讨论,研究了GaN E/D器件性能对逻辑门电路性能的影响。同时还对选择性栅挖槽结合栅介质工艺实现GaN E/D器件存在的问题进行了分析讨论。  相似文献   

8.
随着高压开关和高速射频电路的发展,增强型GaN基高电子迁移率晶体管(HEMT)成为该领域内的研究热点。增强型GaN基HEMT只有在加正栅压才有工作电流,可以大大拓展该器件在低功耗数字电路中的应用。近年来,国内外对增强型GaN基HEMT阈值电压的研究主要集中以下两个方面:在材料生长方面,通过生长薄势垒、降低Al组分、生长无极化电荷的AlGaN/GaN异质材料、生长InGaN或p-GaN盖帽层,来控制二维电子气浓度;在器件工艺方面,采用高功函数金属、MIS结构、刻蚀凹栅、F基等离子体处理,来控制表面电势,影响二维电子气浓度。从影响器件阈值电压的相关因素出发,探讨了实现和优化增强型GaN基HEMT的各种工艺方法和发展方向。  相似文献   

9.
采用了新型的包含22元件的GaN HEMT小信号模型,通过增加与栅源电容Cgs和栅漏电容Cgd并联的电导Ggsf和Ggdf来表征GaN HEMT栅漏电情况.结果表明22元件小信号模型拟合度提高,物理意义更为明确.同时重点改进了寄生电容参数的提取方法,可有效地提取新型栅场板、源场板器件小信号参数.由算法提取的参数值可准确反映GaN HEMT器件的物理特性.  相似文献   

10.
采用了新型的包含22元件的GaN HEMT小信号模型,通过增加与栅源电容Cgs和栅漏电容Cgd并联的电导Ggsf和Ggdf来表征GaN HEMT栅漏电情况.结果表明22元件小信号模型拟合度提高,物理意义更为明确.同时重点改进了寄生电容参数的提取方法,可有效地提取新型栅场板、源场板器件小信号参数.由算法提取的参数值可准确反映GaN HEMT器件的物理特性.  相似文献   

11.
Ka波段AlGaN/GaN HEMT的研制   总被引:1,自引:0,他引:1  
为了提高AlGaN/GaN HEMT的频率,采用了缩小源漏间距、优化栅结构和外围结构等措施设计了器件结构,并基于国内的GaN外延片和工艺完成了器件制备.测试表明所研制的AlGaN/GaN HEMT可以满足Ka波段应用.其中2×75μm栅宽AlGaN/GaN HEMT在30V漏压下的截止频率为32GHz,最大振荡频率为1...  相似文献   

12.
基于标准工艺自主研制了L波段0.5μm栅长的GaN HEMT器件。该器件采用了利用MOCVD技术在3英寸(1英寸=2.54 cm)SiC衬底上生长的AlGaN/GaN异质结外延材料,通过欧姆接触工艺的改进将欧姆接触电阻值控制在了0.4Ω·mm以内,采用场板技术提高了器件击穿电压,采用高选择比的刻蚀工艺得到了一定倾角的通孔,提高了器件的散热能力及增益。结果表明,采用该技术研制的两胞内匹配GaN HEMT器件在工作频率1.5~1.6 GHz下,实现了输出功率大于66 W、功率增益大于15.2 dB、功率附加效率大于62.2%。  相似文献   

13.
研究了一款高性能的AlGaN/GaN高电子迁移率晶体管器件(HEMT),器件基于在蓝宝石衬底上外延生长的AlGaN/GaN异质结构HEMT材料,器件栅长为86 nm,源漏间距为0.8μm。电子束光刻实现T型栅和源漏,保证了器件小的栅长和高的对准精度。制备的器件显示了良好的直流特性和射频特性,在栅偏压为0 V时漏电流密度为995 mA/mm,在栅源电压Vgs为-4.5 V时,最大峰值跨导为225 mS/mm;器件的电流增益截止频率fT和最大振荡频率fmax分别为102和147 GHz。高fT值一方面得益于小栅长,另一方面由于小源漏间距减小了源漏沟道电阻。  相似文献   

14.
毫米波GaN基HEMT器件材料结构发展的研究   总被引:1,自引:0,他引:1  
由于GaN材料的高的饱和电子速度和击穿场强,GaN基HEMT已经成为实现毫米波器件的重要选择。回顾了GaN基HEMT器件材料结构的发展历程,就目前GaN基毫米波HEMT器件设计应用存在的短沟道效应和源漏间较大的导通电阻两个主要问题进行了机理分析,并对GaN基HEMT器件的毫米波应用未来发展方向进行了分析。同时从GaN基HEMT器件材料结构设计入手对解决方案进行了探讨性研究。针对面向毫米波应用的GaN基HEMT材料结构,为有效的抑制短沟道效应,可以采用栅凹槽结构加背势垒结构、采用InAlN等新材料,可以有效降低源漏导通电阻。  相似文献   

15.
大功率GaN HEMT器件在工作时较高的热流密度引发器件高温,而高温会显著影响器件性能及可靠性.从不同器件结构设计出发,结合器件热量传递理论,建立了器件热阻模型;采用高速红外热像仪试验分析了器件结构对GaN HEMT器件稳态热特性的影响,定量给出了不同总栅宽、不同单指栅宽、不同栅间距在不同功率密度下的稳态温升.相关结果...  相似文献   

16.
设计了Ka波段GaN功率高电子迁移率晶体管(HEMT)外延材料及器件结构,采用AlN插入层提高了二维电子气(2DEG)浓度.采用场板结构提高了器件击穿电压.采用T型栅工艺实现了细栅制作,提高了器件高频输出功率增益.采用钝化工艺抑制了电流崩塌,提高了输出功率.采用通孔工艺减小源极寄生电阻,通过优化钝化层厚度减小了寄生电容,提高了器件增益.基于国产SiC外延材料及0.15 μm GaN HEMT工艺进行了器件流片,最终研制成功Ka波段GaN HEMT功率器件.对栅宽300 μm器件在29 GHz下进行了微波测试,工作栅源电压为-2.2V,源漏电压为20 V,输入功率为21 dBm时,器件输出功率为30 dBm,功率增益为9 dB,功率附加效率约为43%,功率密度达到3.3 W/mm.  相似文献   

17.
增强型AlGaN/GaN槽栅HEMT   总被引:1,自引:1,他引:0  
成功研制出蓝宝石衬底的槽栅增强型AlGaN/GaN HEMT. 栅长1.2μm,源漏间距4μm,槽深15nm的器件在3V栅压下饱和电流达到332mA/mm,最大跨导为221mS/mm,阈值电压为0.57V, ft和fmax分别为5.2和9.3GHz. 比较刻蚀前后的肖特基I-V特性,证实了槽栅刻蚀过程中非有意淀积介质层的存在. 深入研究了增强型器件亚阈特性和频率特性.  相似文献   

18.
GaNHEMT器件由于其击穿场强高、导通电阻低等优越的性能,在高效、高频功率转换领域中有着广泛的应用前景.栅驱动芯片对于GaN HEMT器件应用起着至关重要的作用.介绍了GaN HEMT器件特性和驱动要求,对其栅驱动芯片的典型架构和每种芯片架构各自的关键实现技术研究现状进行了综述.同时介绍了GaN基单片集成功率IC的发...  相似文献   

19.
基于硅基p-GaN/AlGaN/GaN异质结材料结构,研制了一款横向结构的高压增强型GaN高电子迁移率晶体管(GaN HEMT)器件。通过采用自对准栅刻蚀与损伤修复技术以及低温无金欧姆合金工艺实现了较低的导通电阻,并借助于叠层介质钝化和多场板峰值抑制技术提升了器件的击穿特性。测试结果表明,所研制GaN器件的阈值电压为1.95 V(VGS=VDS,IDS=0.01 mA/mm),导通电阻为240 mΩ(VGS=6 V,VDS=0.5 V),击穿电压高于1 400 V(VGS=0 V,IDS=1μA/mm),彰显了硅基p-GaN栅结构AlGaN/GaN HEMT器件在1 200 V等级高压应用领域的潜力。  相似文献   

20.
自主研制的GaN HEMT,栅源泄漏电流从10-4 A量级减小到了10 -6 A量级,有效提高了栅漏击穿电压,改善了器件工作特性.采用MIS结构制作了2.5mm栅宽GaN HEMT,测试频率为8GHz,漏源电压为33V时,器件连续波输出功率为18.2W,功率增益为7.6dB,峰值功率附加效率为43.0%.2.5mm×4 GaN HEMT内配配器件,测试频率8GHz,连续波输出功率64.5W,功率增益7.2dB,功率附加效率39%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号