共查询到17条相似文献,搜索用时 78 毫秒
1.
场限环结构以其简单的工艺和较高的效率,在垂直双扩散金属氧化物场效应晶体管终端结构中得到广泛应用,但其性能的提高也有限制。沟槽型终端结构对刻蚀工艺要求较高,并未在实际生产中得到大量应用。将场限环终端结构与沟槽终端结构相结合,设计了一种沟槽型场限环终端,在149.7 μm的有效终端长度上实现了708 V的仿真击穿电压。此结构可以得到较大的结深,硅体内部高电场区距离表面较远,硅表面电场仅为1.83E5 V/cm,具有较高的可靠性。同时,工艺中只增加了沟槽刻蚀和斜离子里注入,没有增加额外的掩膜。 相似文献
2.
为了改善硅功率器件击穿电压性能以及改善IGBT电流的流动方向,提出了一种沟槽-场限环复合终端结构。分别在主结处引入浮空多晶硅沟槽,在场限环的左侧引入带介质的沟槽,沟槽右侧与场限环左侧横向扩展界面刚好交接。结果表明,这一结构改善了IGBT主结电流丝分布,将一部分电流路径改为纵向流动,改变了碰撞电离路径,在提高主结电势的同时也提高器件终端结构的可靠性;带介质槽的场限环结构进一步缩短了终端长度,其横纵耗尽比为3.79,较传统设计的场限环结构横纵耗尽比减少了1.48%,硅片利用率提高,进而减小芯片面积,节约制造成本。此方法在场限环终端设计中非常有效。 相似文献
3.
4.
5.
为了在提升终端耐压的同时减少终端的使用面积,基于屏蔽栅沟槽型MOSFET (shielded gate trench MOSFET,简称SGTMOSFET)设计了一种沟槽型终端。通过Sentaurus TCAD软件对终端结构进行仿真,仅改变沟槽和P型环参数,最终使终端的耐压达到了135V,有效终端长度仅为18.5μm。此终端结构适用于中低压领域,且在SGTMOSFET元胞工艺步骤的基础上仅增加了一层掩膜,终端结构工艺和元胞工艺兼容,易于实现。 相似文献
6.
7.
场板与场限环是用来提高功率FRED抗电压击穿能力的常用终端保护技术,本文分别介绍场板与场限环结终端结构原理和耐压敏感参数,然后采取场板和场限环的互补组合,通过Synopsis公司MEDICI4.0仿真工具优化设一款耐压1200V的FERD器件终端结构,最后通过实际流片验证此终端结构具有良好的电压重复性及一致性。 相似文献
8.
为了提高功率器件结终端击穿电压,节约芯片面积,设计了一款700 V VDMOSFET结终端结构。在不增加额外工艺步骤和掩膜的前提下,该结构采用场限环-场板联合结终端技术,通过调整结终端场限环和场板的结构参数,在151μm的有效终端长度上达到了772 V的击穿电压,表面电场分布相对均匀且最大表面场强为2.27×105V/cm,小于工业界判断器件击穿场强标准(2.5×105 V/cm)。在保证相同的击穿电压下,比其他文献中同类结终端结构节约面积26%,实现了耐压和可靠性的要求,提高了结终端面积的利用效率。 相似文献
9.
提出了一种具有阶梯浅沟槽隔离结构的LDMOS.阶梯浅沟槽结构增加了漂移区的有效长度,改善了表面电场及电流的分布,从而提高了器件的击穿电压.借助器件模拟软件Silvaco对沟槽深度、栅长及掺杂浓度等工艺参数进行了优化设计.结果表明,在保证器件面积不变的条件下,新结构较单层浅沟槽隔离结构LDMOS击穿电压提升36%以上,而导通电阻降低14%. 相似文献
10.
11.
12.
13.
14.
15.
为使3300 V及以上电压等级绝缘栅双极型晶体管(IGBT)的工作结温达到150℃以上,设计了一种具有高结终端效率、结构简单且工艺可实现的线性变窄场限环(LNFLR)终端结构。采用TCAD软件对这种终端结构的击穿电压、电场分布和击穿电流等进行了仿真,调整环宽、环间距及线性变窄的公差值等结构参数以获得最优的电场分布,重点对比了高环掺杂浓度和低环掺杂浓度两种情况下LNFLR终端的阻断特性。仿真结果表明,低环掺杂浓度的LNFLR终端具有更高的击穿电压。进一步通过折中击穿电压和终端宽度,采用LNFLR终端的3300 V IGBT器件可以实现4500 V以上的终端耐压,而终端宽度只有700μm,相对于标准的场限环场板(FLRFP)终端缩小了50%。 相似文献
16.
17.
本文针对VD-MOSFET击穿电压,采用场限环终端结构的耐压设计,并进行了综合分析。在解析式中,提出了η的近似表示式。通过与计算机二维分析结果的比较,证实了η表达式的合理性,其最大相对误差约为10%。最后,对500V的VD-MOSFET进行了设计计算,说明了这一设计方法在工程中的适应性。 相似文献