首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
磷酸钒锂是一种新型的锂离子电池正极材料,其电化学性能受合成方法及工艺条件的影响.介绍了Li3V2(PO4)3的结构特点及充放电过程的电化学特征.全面综述了采用固相反应法、溶胶-凝胶法及微波法等制备磷酸钒锂的研究现状,并比较了各种方法的利弊.  相似文献   

2.
综述了锂离子电池正极材料LiMnPO4的改性研究进展,讨论了制备工艺的改良对该材料结构性能的影响,重点对碳包覆、金属包覆和掺杂金属离子的工艺、性能等方面进行了概括。简要对LiMnPO4正极材料未来的发展进行了展望。  相似文献   

3.
锂离子电池正极材料LiMn2O4的研究进展   总被引:12,自引:2,他引:12  
具有尖晶石相的LiMn2O4因价格低、无毒、无环境污染、制备简单、研究较成熟,因此有着很好的应用前景,被看作最有可能成为新一代商用锂离子二次电池正极材料.由于LiMn2O4电化学循环稳定性能不好,表现在可逆容量衰减较大,尤其在高温下(>55℃)使用衰减更严重,从而限制了它的商业化应用.经过近十几年的研究,人们对其衰减机理有了比较清晰的了解,提出了造成容量衰减的几种可能原因如Jahn-Teller畸变效应、Mn2+在电解质中的溶解、出现稳定性较差的四方相以及电解质的分解等.通过掺杂、表面包覆、制备工艺的改进,人们已能制得循环稳定性能较好的尖晶相材料.本文结合我们研究小组的最新研究成果对锂离子二次电池正极材料LiMn2O4的最新研究进展进行综述和评论.  相似文献   

4.
锂离子电池正极材料LiFePO4的研究进展   总被引:1,自引:1,他引:1  
磷酸铁锂用作锂离子电池正极材料是当前研究热点之一,由于其性能、价格、安全和环境优势,其应用前景十分看好.首先对晶体结构进行了描述,并综述了近年来各种制备LiFePO4的方法,包括高温固相合成,机械化学法等"固相方法"以及溶胶-凝胶法等"软化学合成法",对各种方法的优缺点进行了分析对比.并且对LiFePO4的改性研究进行了简单的探讨.  相似文献   

5.
新一代锂离子电池正极材料LiFePO4因其比容量大、价格低廉、结构稳定等优点受到广泛研究.基于密度泛函理论,采用平面波赝势方法计算了正极材料LiFePO4的电子结构,分析了其能带结构、电子态密度等相关性质;从理论上分别探讨了LiFePO4作为锂离子电池正极材料的充放电机理及其存在的问题,并对各种改进方法进行了综述.  相似文献   

6.
用球磨-热解法制备了锂离子电池碳包覆磷酸锰铁锂正极材料。通过XRD、TEM和电化学测试对材料进行了表征。所制备的材料平均粒径为100nm,碳在材料表面包覆均匀,包覆的碳层厚度约为2~3nm。在650℃下热解制备的LiMn0.5Fe0.5PO4正极材料具有最佳的电化学性能,其第一周的可逆容量为153.3mAh/g,经过50周的循环以后,可逆容量保持不变。材料在2.0C恒流放电时,放电容量仍然保持在121mAh/g左右,具有较优的倍率性能。  相似文献   

7.
目前用于锂离子电池商业生产的正极材料已很难适应当今的能源供应需求。近年来,磷酸镍锂(LiNiPO_4)因较高的氧化还原电位,大的比容量和高能量密度受到越来越多的关注。尽管如此,LiNiPO_4在电子传导以及纯相制备等方面仍存在一定问题。综述了LiNiPO_4的研究进展,介绍了LiNiPO_4的结构特点及制备方法,并对其发展前景进行了展望。  相似文献   

8.
对近年来圆外层状氧化锰锂正极材料的研究进展进行了综述。详细介绍了正交和单斜同质多晶层状氧化锰锂的晶体结构,合成方法及其电化学特性。开发新的合成方法以及多组分掺杂改性以提高英应用性仍是今后.层状氧化锰锂的研究发展方向。  相似文献   

9.
锂离子电池(LIB)近年来受到了广泛的关注,与其他可充电电池相比,锂离子电池LIB具有更高的能量密度、功率和效率.正极作为LIB的关键部件,其特性会显著影响LIB的性能.本文分类综述了一些锂离子正极材料,包括一元、二元、三元金属锂氧化物和磷酸亚铁锂正极材料,并对其优缺点进行了介绍.此外,本文还对已商业化的正极材料物性数...  相似文献   

10.
作为新一代锂离子电池正极材料的磷酸铁锂(LiFePO4)具有众多优点,因而被认为是一种很有开发前途的正极材料,目前已报道的LiFePO4制备方法多种多样.综述了LiFePO4材料在制备方面的研究进展,比较了不同合成方法对材料性能的影响.  相似文献   

11.
锂离子二次电池正极材料氧化锰锂的研究进展   总被引:19,自引:1,他引:19  
综述了最近几年对于锂离子二次电池正极材料氧化锰锂的研究。研究的氧化锰锂材料主要有尖晶石结构的LiMN2O4、Li4Mn5O9和Li4Mn5O12以及层状结构的LiMnO2。对于LiMN2O4,通过引入适当的杂原子和采用新的溶胶-凝胶法制备复相 可以有效地克服Jahn-Teller效应所造成的容量衰减现象。Li4Mn5O9display structure  相似文献   

12.
综述了橄榄石LiFePO4的晶体结构,重点讨论了近年来各种合成LiFePO4的制备方法以及改性研究,并对其发展方向作出了展望.  相似文献   

13.
汤宏伟  常照荣  钟发平 《功能材料》2004,35(Z1):1857-1860
综述了锂离子电池正极材料LiNiO2的研究进展,对LiNiO2的特点、合成方法、改性进行了详细的介绍.  相似文献   

14.
磷酸铁锂正极材料改性研究进展   总被引:11,自引:0,他引:11  
磷酸铁锂(LiFePO4)是绿色环保的锂离子动力电池正极材料。但由于材料自身电子和离子传导率差、堆积密度低等缺点,限制了其实际应用。综述了对磷酸铁锂材料改性研究的最新进展,并预测今后的发展方向。  相似文献   

15.
锂离子电池正极材料LiNiO2的制备和性能研究   总被引:3,自引:0,他引:3  
本文介绍了以氢氧化锂和氢氧化镍为原料通过高温法合成镍酸锂的方法,并讨论了合成了条件对产物电化学性能的影响。实验结果表明,合成反应温度,反应时间,Li/Ni摩尔比对镍酸锂电化学性能有较大的影响,合成出具有电化学活性的镍酸锂需要严格控制反应条件。  相似文献   

16.
锂离子电池正极材料LiMn2O4制备新工艺   总被引:6,自引:0,他引:6  
采用球磨湿混和旋转合成相结合的新工艺来制备锂离子的电池正极材料LiMn2O4,并对制备的材料进行了粒度,化学成分以及电化学性能测试,制备的LiMn2O4为正尖晶石结构,而且物质纯净,同一批次制备的材料化学成分均匀,粉末粒度分布范围窄,中粒径为10.67um,首次充电容量为124mAh/g,放电容量为115mAh/g,循环次数达30次时,放电容还大于100mAh/g,循环稳定性,球磨湿混工艺能将原料混合均匀,并能有效地使原料粒度细化而且粒度均匀,旋转合成工艺能使反应物和反应产物的温度均匀,粒度均匀,晶型结构与成分均匀,球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能性能良好的LiMn2O4。  相似文献   

17.
采用碳热还原方法、以不同掺碳(葡萄糖为碳源)方式合成LiFePO4/C复合正极材料,利用X射线衍射仪、高倍率透射电镜以及电池测试仪等手段对样品进行了分析研究,并探讨了不同掺碳方式对复合LiFePO4/C正极材料性能的影响.结果表明,采用湿法加入葡萄糖制备的LiFePO4/C正极材料中LiFePO4的粒径范围在40~80nm左右,为纳米材料尺度,0.05C倍率下首次放电比容量达到160mAh/g,1C倍率下循环50次后,容量衰减仅为1.2%.  相似文献   

18.
以Fe2O3为铁源,用环氧树脂对反应前驱体进行包覆,通过固相还原法制备了LiFePO4/C复合正极材料.采用XRD、SEM、循环伏安以及充放电测试等方法对其晶体结构、表观形貌和电化学性能进行了研究.研究结果表明,煅烧温度对材料的电化学性能有较大影响,在700℃煅烧所得产物为单一的橄榄石型晶体结构,粒径分布较均匀,且具有良好的电化学性能.以0.1C倍率进行充放电,其首次放电容量为150.3mAh/g,充放电循环20周后,容量保持率达99.2%;以1.0、2.0C倍率进行充放电,其首次放电容量分别为131.4和122.1mAh/g.其在过充条件下的电性能也佳,过充后还能继续放电,但在过放电条件下,其电性能迅速劣化.  相似文献   

19.
锂离子电池正极材料Li3V2(PO4)3的制备及性能研究   总被引:1,自引:0,他引:1  
单斜结构的Li3V2(PO4)3是很有前途的聚阴离子型锂离子电池正极材料.将一定配比的LiOH·H2O、V2O5、H3PO4和蔗糖(C12H22O11)通过球磨均匀混合,在氮气保护下于800℃焙烧16h,通过碳热还原合成了Li3V2(PO4)3.用X射线衍射和扫描电镜分析对材料的结构和形貌进行了表征.充放电测试表明,在电压范围为3.0~4.3V和3.0~4.8V时,Li3V2(PO4)3正极材料具有较高的比容量、优良的循环性能和倍率特性.在电压范围为1.5~4.8V时,Li3V2(PO4)3正极材料具有很高的比容量,但循环性能较差.  相似文献   

20.
橄榄石型结构LiFePO4因其结构特征和潜在的低成本而有望成为下一代锂离子电池正极材料。但是要使LiFePO4商业化必须开发出适于规模化生产高性能LiFePO4正极材料的工艺。本文在综合分析LiFePO4制备方法、导电性改善及填充密度提高途径的基础上,认为可借鉴Ni-MH电池正极材料球形Ni(OH)2制备技术发展经验,从理论上深入研究LiFePO4的形成过程,通过控制橄榄石型结构LiFePO4材料的结晶度、晶粒大小及形貌、元素分布、界面结构来满足高容量、大比功率及长循环寿命的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号