首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict void nucleation and very limited void growth. Void coalescence would therefore be largely postponed. However, using the shear modification of the Gurson model, recently introduced by Nahshon and Hutchinson (2008) [1], failure prediction is possible at zero or even negative mean stress. Since, this shear modification has too large effect in some cases where the stress triaxiality is rather high, an extension is proposed in the present study to better represent the damage development at moderate to high stress triaxiality, which is known to be well described by the Gurson model. Failure prediction and tensile response curves for an interfacial shear failure or a ductile plug failure, are here compared when using either the original Gurson model, the shear modified model, or the extension to the shear modified model. The suggested extension makes it possible to use the shear modified model as a simple way of accounting for damage development under low triaxiality shearing, without further increasing the damage rate in regions of moderate to high stress triaxiality.  相似文献   

2.
Damage of Advanced High Strength Steel resistance spot welds is investigated in Cross Tension by means of coupled microtomography, metallography and fractography. Three main failure mechanisms and failure zones are identified: (i) strain localization in the base metal/sub-critical Heat Affected Zone (HAZ), (ii) ductile shear around the weld and (iii) semi-brittle fracture in the weld nugget. A finite element model is developed in order to illustrate how the mechanisms compete and lead to a given failure type. The local constitutive behavior is obtained from tensile tests on simulated HAZ microstructures. The model enables capturing the main trends in the transition between failure types as a function of weld geometry as well as a reliable estimation of the load bearing capacity.  相似文献   

3.
Failure mode of laser welds in lap-shear specimens of high strength low alloy (HSLA) steel sheets is investigated in this paper. The experiments for laser welds in lap-shear specimens under quasi-static loading conditions are briefly reviewed first. The experimental results showed that the laser welds failed in a ductile necking/shear failure mode and the ductile failure was initiated at a distance away from the crack tip near the boundary of the base metal and heat affected zone. In order to understand the failure mode of these welds, finite element analyses under plane strain conditions were conducted to identify the effects of the different plastic behaviors of the base metal, heat affected zone, and weld zone as well as the weld geometry on the ductile failure. The results of the reference finite element analysis based on the homogenous material model show that the failure mode is most likely to be a middle surface shear failure mode in the weld. The results of the finite element analysis based on the multi-zone non-homogeneous material models show that the higher effective stress–plastic strain curves of the weld and heat affected zones and the geometry of the weld protrusion result in the necking/shear failure mode in the load carrying sheet. The results of another finite element analysis based on the non-homogeneous material model and the Gurson yield function for porous materials indicate that the consideration of void nucleation and growth is necessary to identify the ductile failure initiation site that matches well with the experimental observations. Finally, the results of this investigation indicate that the failure mode of the welds should be examined carefully and the necking/shear failure mode needs to be considered for development of failure or separation criteria for welds under more complex loading conditions.  相似文献   

4.
多孔材料剪切局部化中的尺寸效应   总被引:1,自引:0,他引:1  
微孔洞的尺寸对于孔洞长大率的影响显著,研究了这种尺寸效应在延性材料的塑性流动局部化中的作用。在拓展的Gurson模型基础上,采用Rice提出的一个简单的模型,剪切带内外的材料在发生塑性流动局部化时分别为不同的响应,讨论了孔洞尺寸a和初始孔洞体积百分比f0的影响。结果表明:考虑孔洞尺寸后单轴拉伸曲线变化比较大,但剪切带角度几乎没有变化。  相似文献   

5.
In this paper, the failure mode of laser welds in lap‐shear specimens of non‐galvanized SAE J2340 300Y high strength low alloy steel sheets under quasi‐static loading conditions is examined based on experimental observations and finite element analyses. Laser welded lap‐shear specimens with reduced cross sections were made. Optical micrographs of the cross sections of the welds in the specimens before and after tests are examined to understand the microstructure and failure mode of the welds. Micro‐hardness tests were also conducted to provide an assessment of the mechanical properties in the base metal, heat‐affected and fusion zones. The micrographs indicate that the weld failure appears to be initiated from the base metal near the boundary of the base metal and the heat‐affected zone at a distance away from the pre‐existing crack tip, and the specimens fail due to the necking/shear of the lower left load carrying sheets. Finite element analyses based on non‐homogenous multi‐zone material models were conducted to model the ductile necking/shear failure and to obtain the J integral solutions for the pre‐existing cracks. The results of the finite element analyses are used to explain the ductile failure initiation sites and the necking/shear of the lower left load carrying sheets. The J integral solutions obtained from the finite element analyses based on the 3‐zone finite element model indicate that the J integral for the pre‐existing cracks at the failure loads are low compared to the fracture toughness and the specimens should fail in a plastic collapse or necking/shear mode. The effects of the sheet thickness on the failure mode were then investigated for laser welds with a fixed ratio of the weld width to the thickness. For the given non‐homogenous material model, the J integral solutions appear to be scaled by the sheet thickness. With consideration of the plastic collapse failure mode and fracture initiation failure mode, a critical thickness can be obtained for the transition of the plastic collapse or necking/shear failure mode to the fracture initiation failure mode. Finally, the failure load is expressed as a function of the sheet thickness according to the governing equations based on the two failure modes. The results demonstrate that the failure mode of welds of thin sheets depends on the sheet thickness, ductility of the base metal and fracture toughness of the heat‐affected zone. Therefore, failure criteria based on either the plastic collapse failure mode or the fracture initiation failure mode should be used cautiously for welds of thin sheets.  相似文献   

6.
This paper discusses the ductile fracture behaviour of the clinched joint on Alloy 6061 sheets. Failure behaviour of the clinched joint is associated with the nucleation, growth and coalescence of voids within the microstructure. Various corrections to the original Gurson model are proposed to allow for instability and final fracture of the material. This paper is concerned with the application of the modified Gurson–Tvergaard–Needleman damage developed by Ken Nahshon and Zhenyu Xue. The results of the tension tests are compared with those of numerical analysis to obtain the initial void volume fraction f0 and the shear damage coefficients kw. The modified Gurson–Tvergaard–Needleman model is used to describe the failure behaviour and the shear strength of the clinched joint. Good agreement is shown between the experiment results and the numerical results on the location of fracture and the maximum failure load.  相似文献   

7.
Fastening elements usually lead to high stress concentrations; fatigue failure thus becomes the most critical failure mode for a fastening element itself or the region around it under fluctuating stresses. A designer should seek the ways of increasing fatigue strength of a joint to ensure the safety of the whole structure. Resistance spot welding is the most preferred method to join metal sheets. The design variables for spot‐weld joints affecting their strengths are basically sheet thickness, spot‐weld nugget diameter, number of spot welds and the joint type as exemplified in tensile shear (TS), modified tensile shear (MTS), coach peel (CP) and modified coach peel (MCP) specimens. In this study, the effects of these parameters on the fatigue life of spot‐weld joints have been investigated. For this purpose, one of the most reliable fatigue assessment models, Coffin–Manson approach, was used. In order to accurately determine the stress and strain states, a nonlinear finite element analysis was carried out taking into account plastic deformations, residual stresses developed after unloading and contacting surfaces. The results provide designers with some guidelines to foresee the impact of design changes on fatigue strength of spot‐weld joints.  相似文献   

8.
Numerical simulations of ductile fracture initiation caused by the interaction between a notch tip and a nearby hole under mixed-mode loading involving modes I and II are performed. Attention is restricted to plane strain, small-scale yielding conditions. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed within the framework of a finite deformation plasticity theory. The failure of the ligament connecting the notch tip and the hole by either microvoid coalescence or by intense plastic strain localization is modelled. The effect of mode-mixity on the notch tip deformation, hole growth and the critical value of J at fracture initiation is examined. The dominant failure mechanism which is operative near the notch tip for various extents of mixity of modes I and II is identified.  相似文献   

9.
A modified Gurson model and its application to punch-out experiments   总被引:2,自引:0,他引:2  
Recent experimental evidence has reiterated that ductile fracture is a strong function of stress triaxiality. Under high stress triaxiality loading, failure occurs as a result of void growth and subsequent necking of inter-void ligaments while under low stress triaxiality failure is driven by shear localization of plastic strain in these ligaments due to void rotation and distortion. The original Gurson model is unable to capture localization and fracture for low triaxiality, shear-dominated deformations unless void nucleation is invoked. A phenomenological modification to the Gurson model that incorporates damage accumulation under shearing has been proposed. Here we further extend the model and develop the corresponding numerical implementation method. Several benchmark tests are performed in order to verify the code. Finally, the model is utilized to model quasi-static punch-out experiments on DH36 steel. It is shown that the proposed modified Gurson model, in contrast to the original model, is able to capture the through-thickness development of cracks as well as the punch response. Thus, the computational fracture approaches based on the modified Gurson model may be applied to shear-dominated failures.  相似文献   

10.
The microstructural characterizations, micro‐hardness measurements and fatigue tests of B1500HS steel spot welded tensile‐shear specimens were performed. The high hardness values of base material (470 HV) and nugget (515 HV) are closely related to the dominant formation of martensitic microstructures, while the occurrence of soft zone is the result of the formation of ferrite phases in inter‐critical heat‐affected zone (HAZ), as well as martensite tempering in sub‐critical HAZ. The fatigue failure modes involve the fracture along the circumference or along the direction of width. The fatigue property of spot welded B1500HS is found to be better than that of spot welded M190 because of the thicker sheet and suitable nugget size, which follows the standard rule of 5t0.5, where t is the sheet thickness.  相似文献   

11.
A continuum damage model for ductile fracture of weld heat affected zone   总被引:5,自引:0,他引:5  
In this paper, the ductile plastic damage behaviour of weld heat affected zone (HAZ) is studied by use of continuum damage mechanics (CDM). Based on a continuum damage variable, D, the effective stress concept and the thermodynamics, a general continuum damage model for Isotropie ductile fracture is derived from a new dissipation potential chosen by the author herein. A comparison between the damage model and experimental results is presented and a good agreement is found. The model is also used to analyse the ductile plastic damage evolution in thermally simulated welding coarse-grained HAZ of a low alloy steel. The effects of stress triaxiality on plastic damage evolution and on ductile fracture of the coarse-grained HAZ are discussed.  相似文献   

12.
The objective of this study is determination of the effect of mechanical heterogeneity on ductile crack initiation and propagation in weldments using micromechanical approach. Welded single-edge notched bend (SENB) specimens were experimentally and numerically analysed. Material properties of welded joint zones were estimated using a combined experimental and numerical procedure; strains on a smooth tensile specimen were determined using ARAMIS stereometric measuring system in order to obtain true stress – true strain curves. High-strength low-alloyed steel was used as base metal, in quenched and tempered condition. JR curves and crack growth initiation values of fracture mechanics parameter were experimentally and numerically obtained for specimens with a pre-crack in the heat-affected zone (HAZ) and weld metal (WM). The complete Gurson model (CGM) was used in prediction of JR curves and crack growth initiation. It is shown that the resistance to crack initiation and growth can be predicted using micromechanical analysis, and that the results are significantly affected by mechanical heterogeneity of the weldment.  相似文献   

13.
In this study, the correlation between the stress–strain behavior of a carbon fiber-reinforced plastic (CFRP) and the temperature at which the heat-affected zone (HAZ) is generated is investigated. First, CFRP ([?45/45]2s laminate) specimens were heated at several temperatures to induce thermal damage, i.e. a HAZ. Subsequently, tensile tests were conducted on the specimens with thermal damage. Then, microscopy and X-ray measurements were carried out to discuss the stress–strain responses from a microscopic viewpoint. The results of strain measurement during thermal treatment indicated that the strain increases with increasing temperature. The tensile tests showed that the CFRP specimens subjected to thermal damage during heating at a high temperature fractured in the ductile mode, whereas the fracture mode of the CFRP specimens with low-temperature thermal damage was discontinuous. Microstructure observation using X-ray tomography showed that the debonding between the carbon fibers and the resin matrix induced by heating to above the glass transition temperature was responsible for the continuous fracture mode.  相似文献   

14.
In automobile crashworthiness simulation, the prediction of plastic deformation and fracture of each significant, single component is critical to correctly represent the transient energy absorption through the car structure. There is currently a need, in the commercial FEM community, for validated material fracture models which adequately represent this phenomenon. The aim of this paper is to compare and to validate existing numerical approaches to predict failure with test data. All studies presented in this paper were carried out on aluminium wrought alloys: AlMgSi1.F31 and AlMgSiCu‐T6. A viscoplastic material law, whose parameters are derived from uniaxial tensile and compression tests at various strain rates, is developed and presented herein. Fundamental ductile fracture mechanisms such as void nucleation, void growth, and void coalescence as well as shear band fracture are present in the tested samples and taken into consideration in the development of the fracture model. Two approaches to the prediction of fracture initiation are compared. The first is based on failure curves expressed by instantaneous macroscopic stresses and strains (i. e. maximum equivalent plastic strain vs. stress triaxiality). The second approach is based on the modified Gurson model and uses state variables at the mesoscopic scale (i. e. critical void volume fraction). Notched tensile specimens with varying notch radii and axisymmetric shear specimens were used to produce ductile fractures and shear band fractures at different stress states. The critical macroscopic and mesoscopic damage values at the fracture initiation locations were evaluated using FEM simulations of the different specimens. The derived fracture criteria (macroscopic and mesoscopic) were applied to crashworthiness experiments with real components. The quality of the prediction on component level is discussed for both types of criteria.  相似文献   

15.
The identification of welded tubes properties considering the weld bead and Heat Affected Zone (HAZ) is important for reliable and accurate finite element simulation of tubular plastic forming processes such as tube hydroforming and rotary draw bending processes. Therefore, a simplified method is proposed to extract the weld bead and HAZ properties. Full size standard tensile specimens cut from the welded tube and comprising the weld parallel to the load direction are extended to failure. Mechanical properties obtained from uniaxial tensile test are correlated with the microhardness data measured across the welded specimen and by using the rule of mixtures; the constitutive model parameters of weld bead and HAZ regions are identified. Accuracy of the proposed method is assessed by comparing finite element simulation predictions to experimental measurements obtained from two mechanical tests: the first one is the uniaxial tensile test performed on specimens comprising the weld line perpendicular to the loading direction and the second test is the free bulge hydroforming test achieved on seamed tubular samples. This investigation has shown that the presented method is practical in use and sufficiently accurate to extract the weld metal properties of seamed tubes.  相似文献   

16.
17.
Abstract

Resistance spot welding is the dominant process for joining sheet metals in automotive industry. Even thickness combinations are rarely used in practice; therefore, there is clearly a practical need for failure behaviour investigation of uneven thickness resistance spot welds. The aim of the present paper is to investigate the failure mode and failure mechanism of dissimilar thickness low carbon steel resistance spot welds during tensile shear overload test. Microstructural investigations, microhardness tests and tensile shear tests were conducted. Mechanical properties of the joints were described in terms of peak load, energy absorption and failure mode. In order to understand the failure mechanism, micrographs of the cross-sections of the spot welded joints during and after tensile shear are examined by optical microscopy. It was found that for well established weld nuggets, the final solidification line is located in the geometrical centre of the joint. In pull-out failure mode, failure is initiated by necking of the base metal at the thinner thickness sheet. Finally, it was concluded that weld nugget size, weld penetration and the strength of the thinner sheet are the main controlling factors of the peak load and energy absorption of dissimilar thickness spot welds.  相似文献   

18.
This paper describes an approach to identify plastic deformation and failure properties of ductile materials. The experimental method of the small punch test is used to determine the material response under loading. The resulting load displacement curve is transferred to a neural network, which was trained using load displacement curves generated by finite element simulations of the small punch test and the corresponding material parameters. The simulated material behavior of the specimen is based on the ductile elastoplastic damage theory of Gurson, Tvergaard and Needleman. During a training process the neural network generates an approximated function for the inverse problem relating the material parameters to the shape of the load displacement curve of the small punch test. This technique was tested for three different materials (ductile steels). The identified parameters are verified by testing and simulating notched tensile specimens.  相似文献   

19.
The triaxiality of the stress state is known to greatly influence the amount of plastic strain which a material may undergo before ductile failure occurs.During tensile load histories, the necking induces significant stress triaxiality modifications which in turn affect the experimental stress-strain measurements needed for the characterization of ductile metals.In this paper, the recently proposed “MLR” model of necking effect is used to obtain the flow curves of various metals by correcting the experimental data of tensile tests. Finite elements simulations of the experimental tests are performed to calculate the stress triaxiality evolution on various notched and unnotched specimens. A ductile failure criterion, due to Bao and Wierzbicki, is then applied to evaluate the material damage and predict failure. This procedure is applied to a set of 20 specimens series made of six metals with 10 different notch shapes.The damage calculations also indicate the material points where failure initiates. These predictions are confirmed by micrographic observation of voids on polished fragments of the broken specimens.  相似文献   

20.
In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号