共查询到20条相似文献,搜索用时 62 毫秒
1.
OSKA燃烧系统喷雾撞壁混合的3维数值模拟 总被引:1,自引:0,他引:1
利用喷雾碰撞来形成可燃混合气的OSKA燃烧系统近年来受到了广泛重视。本以Naber等人利用激光阴影摄影法拍摄定容室内喷雾近壁撞凸台壁面的试验为依据,对其模拟的OSKA系统的喷雾混合过程进行了3维数值模拟计算,并与试验结果进行了对比,两比较吻合。在此基础上探讨了OSKA系统中混合气形成的机理,力求找出该燃烧系统具有良好性能的原因。 相似文献
2.
应用GT-POWER软件和化学动力学软件CHEMKIN建立了汽油发动机工作过程计算模型,并用试验结果进行了验证。在此基础上对汽油发动机燃烧LPG时的动力性能及经济性能进行了变参数研究。模拟结果表明,在相同工况条件下,随着压缩比的增大,燃用LPG发动机的经济性和动力性能都有所提高,但同时爆震指数也相应增加。随着空燃比的增加,发动机的经济性能和动力性能均先提高后降低,空燃比对缸内层流燃烧速度和绝热火焰温度影响较大。 相似文献
3.
柴油机燃烧过程中喷雾内部的物理化学过程非常复杂,传热、蒸发、扩散、流动等物理过程控制着化学反应,影响着火和燃烧过程,进而决定着发动机的动力性、经济性以及排放性能。利用CFD分析软件FIRE对一台直列6缸增压柴油机的喷雾与燃烧过程进行模拟。研究了喷雾锥角对燃烧过程的影响规律以及喷雾锥角对碳烟和NOx生成的影响。 相似文献
4.
5.
利用AVL FIRE软件对不同结构的进气道方案进行瞬态模拟计算,分析了进气道结构对天然气发动机燃烧过程的影响规律。研究结果表明,湍动能的变化与涡流比的大小关系不大,主要受Z方向滚流比的影响;燃烧速率快慢与缸内平均湍动能高低并非一一对应关系,燃烧速率主要依赖于火花塞周围的湍动能分布情况。通过改进气道Ⅲ方案与气门座圈连接处的入射角度,缸内滚流与涡流运动均明显增强,且缸内湍动能分布显著改善,提升了化学反应速率与火焰传播速度,燃烧特性显著改善。两个试制进气道方案的台架试验结果表明,气道Ⅲ改进方案能够改善天然气发动机的经济性、可靠性与高速动力性。 相似文献
6.
基于AVL发动机专用数值模拟软件BOOST,建立了单缸直喷氢发动机模型.模拟结果和实验结果的对比表明,所建BOOST模型具有较高的可信度.通过改变发动机的主要结构参数和运转参数,研究氢发动机的燃烧特性以及它们对氢发动机动力性和经济性的影响. 相似文献
7.
8.
柴油/甲醇二元燃料发动机缸内燃烧数值模拟 总被引:1,自引:0,他引:1
为研究柴油/甲醇二元燃料的缸内燃烧过程,基于对二元燃料燃烧特征的分析,发展了湍流耦合反应动力学的柴油/甲醇二元燃料缸内燃烧机理和燃烧模型.基于一个已有的甲醇/正庚烷二元燃料燃烧机理,进一步提高了机理的预测精度,燃烧模型通过计算混合时间尺度和化学反应时间尺度来衡量燃烧的受控因素,其中化学反应时间尺度以熵增率衡量.通过发动机试验对模型进行了标定和验证,结果表明:该燃烧机理和燃烧模型能够很好地对纯柴油和柴油/甲醇二元燃料燃烧过程进行预测,包括随着甲醇比例的增加,滞燃期延长,甲醇火焰传播预混燃烧放热峰值逐渐明显.采用直接求解化学反应而不考虑湍流的燃烧模型,对燃烧进程的预测结果则随着甲醇量的增加而逐渐高于试验值. 相似文献
9.
10.
11.
The cycle variation characteristics of a port fuel injection hydrogen internal combustion engine (PFI-HICE) have been extensively investigated. The covariance of indicated mean effective pressure (COVimep) is the best parameter for evaluating the cycle variations in the PFI-HICE. COVimep decreases as fuel–air ratio increases from 1000 to 5500 rpm, and engine speed minimally affects COVimep. The effect of ignition advance angle on COVimep is determined by fuel–air ratio. The ignition advance angles that correspond to the minimum COVimep of the PFI-HICE decrease as fuel–air ratio increases. The effect of ignition advance angle on COVimep diminishes as fuel–air ratio increases. The COVimep of the PFI-HICE rapidly decreases as throttle increases when the throttle is less than 20%. Injection timing only slightly affects COVimep under high-speed conditions, and COVimep increases when hydrogen is injected in intake periods under low-speed conditions. These results indicate that studying COVimep improves the stability of PFI-HICEs. 相似文献
12.
S.C. Chen Y.L. Kao G.T. Yeh M.H. Rei 《International Journal of Hydrogen Energy》2017,42(33):21334-21342
Hydrogen enhanced combustion (HEC) for internal combustion engine is known to be a simple mean for improving engine efficiency in fuel saving and cleaner exhaust. An onboard compact and high efficient methanol steam reformer is made and installed in the tailpipe of a vehicle to produce hydrogen continuously onboard by using the waste heat of the engine for heating up the reformer; this provides a practical device for the HEC to become a reality. This use of waste heat from engine enables an extremely high process efficiency of 113% to convert methanol (8.68 MJ) for 1.0 NM of hydrogen (9.83 MJ) and low cost of using hydrogen as an enhancer or as a fuel itself. The test results of HEC from the onboard hydrogen production are presented with 2 gasoline engine vehicles and 2 diesel engines; the results indicate a hike of engine efficiency in 15–25% fuel saving and a 40–50% pollutants reduction including 70% reduction of exhaust smoke. The use of hydrogen as an enhancer brings about 2–3 fold of net reductions in energy, carbon dioxide emission and fuel cost expense over the input of methanol feed for hydrogen production. 相似文献
13.
Selahaddin Orhan Akansu Selim Tangöz Nafiz Kahraman Mehmet İlhan İlhak Salih Açıkgöz 《International Journal of Hydrogen Energy》2017,42(40):25781-25790
This study presents experimental results of engine performance, combustion and emissions in an SI engine fueled by gasoline-ethanol-hydrogen blends. In the experimental studies, engine performance and emission values were analyzed fueled by gasoline, gasoline-ethanol and gasoline-ethanol-hydrogen blends, respectively. When ethanol has been added volumetrically to gasoline 20% of ethanol (G80E20), engine performance and emissions have been worsened. However, the engine performance and emission values have been improved with the adding of hydrogen to blend. The results showed that the addition of hydrogen to the gasoline-ethanol blend improved the combustion process and improved the combustion efficiency, expanded the combustibility range of the gasoline-ethanol blend, reduced emissions. But, nitrogen oxide emission values increased with the adding of hydrogen. 相似文献
14.
Sergey D. Zambalov Igor A. Yakovlev Vladimir A. Skripnyak 《International Journal of Hydrogen Energy》2017,42(27):17251-17259
In this paper the combustion and ignition process in the hydrogen-fueled peripheral-ported rotary engine with single and dual laser ignition systems was studied numerically. The computational method was established for the process simulation including interaction between turbulence and chemical reactions. The detailed chemical kinetic model of hydrogen combustion was used. It was shown that the ignition and combustion process in the H2-fueled rotary engine is highly transient with specific distortion and stretching of the combustion front in the combustion chamber due to complex motion of the rotor relative to the engine housing. The single and dual laser ignition systems were simulated to compare the ignition efficiency and the rate of hydrogen burning out. The evaluation of pressure in the combustion chamber was performed and compared with the experimental data obtained for the rotary engine fueled by natural gas. It was shown that the H2-fueled rotary engine with the dual laser ignition system has potential application in alternative automotive industry due to high efficiency and near-zero carbon-based emission. 相似文献
15.
As a practical solution to reduce the emission pollution and energy crisis, the research and development of HICE has been processed in several decades. The focus of this paper is trying to explore the new features of the combustion duration in HICE not only by engine experiment, but also by analysis of the physical properties of hydrogen, especially the obvious difference from that of gasoline. Firstly, the laminar flame speed difference between hydrogen and gasoline was studied and discussed. Secondly, a distinctive rule of combustion duration in HICE was discovered by analyzing the experiment data. Finally, as a key reference point to the HICE operation, a new characteristic of the location of 50% mixture combust up was proposed and analyzed, this will be helpful for the calibration of optimum ignition timing. 相似文献
16.
17.
以KIVA3为计算平台,对4气门直喷式非增压柴油机在油注喷向燃烧室侧壁后飞溅形成二次喷射燃烧的整个工作过程进行了模拟计算,着重分析了压缩和膨胀做功冲程缸内流场。得出以下结论:在进气涡流作用下,活塞压缩后期产生的挤流以螺旋线路进入燃烧室,因此对若干几何参数一样的喷孔喷出的油注产生的柴油气的作用不同,进而各油注的燃烧历程也不同。对带有二次喷射导向壁面的小口径比和小径深比的ω型燃烧室,充分利用活塞顶面以上氧气的问题仍有待解决。 相似文献
18.
一种新概念内燃机--基于多孔介质燃烧技术的超绝热发动机 总被引:11,自引:1,他引:10
多孔介质中的超绝热燃烧是一种先进的燃烧技术,具有高效低污染的特点。将这一技术应用于发动机领域,有可能引起内燃机技术和产业的一场重大革新。介绍超绝热燃烧的概念,讨论了多孔介质中往复流动下超绝热燃烧的特点,对多孔介质发动机的工作循环作了简单的热力学分析。在此基础上,对当前国外超绝热发动机的基础研究进行综述,着重介绍了分别由美国、日本和德国提出的三种超绝热发动机的方案的理论和实验研究进展,以期引起我国内燃机界对这一发展动向的关注。 相似文献
19.
The polytropic coefficient has important effect on the calculation of the instantaneous heat release rate and its comparison with specific heat ratio contains the information of the gas-surroundings heat exchange. This article studies the polytropic coefficient characteristics from 1000 rpm to 5000 rpm and the equivalence ratio from 0.24 to 0.55 by using experimental data from a 2.0 L hydrogen engine. The polytropic coefficient increase from 1.3 to 1.35 with the increase of engine speed from 1000 rpm to 4000 rpm, and then it decrease to around 1.34. This characteristic can be used to calculate the heat release rate more accurately. The study of the effect of equivalence ratio suggested that the polytropic coefficient decreased with the increase of equivalence ratio. The polytropic coefficient of hydrogen engine ranges from 1.28 to 1.35, which is less than the gasoline of 1.32–1.4. And the rising period of polytropic coefficient of ‘hydrogen – 0.55’ at 4500 rpm is very longer than others, which showed that the gases properties had effect on the heat transfer. These characteristics could not only be used for heat transfer calculation, but they can also enrich the research of polytropic coefficient for hydrogen internal combustion engine. 相似文献