首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OSKA燃烧系统喷雾撞壁混合的3维数值模拟   总被引:1,自引:0,他引:1  
贺萍  刘永长 《内燃机学报》1998,16(3):253-258
利用喷雾碰撞来形成可燃混合气的OSKA燃烧系统近年来受到了广泛重视。本以Naber等人利用激光阴影摄影法拍摄定容室内喷雾近壁撞凸台壁面的试验为依据,对其模拟的OSKA系统的喷雾混合过程进行了3维数值模拟计算,并与试验结果进行了对比,两比较吻合。在此基础上探讨了OSKA系统中混合气形成的机理,力求找出该燃烧系统具有良好性能的原因。  相似文献   

2.
应用GT-POWER软件和化学动力学软件CHEMKIN建立了汽油发动机工作过程计算模型,并用试验结果进行了验证。在此基础上对汽油发动机燃烧LPG时的动力性能及经济性能进行了变参数研究。模拟结果表明,在相同工况条件下,随着压缩比的增大,燃用LPG发动机的经济性和动力性能都有所提高,但同时爆震指数也相应增加。随着空燃比的增加,发动机的经济性能和动力性能均先提高后降低,空燃比对缸内层流燃烧速度和绝热火焰温度影响较大。  相似文献   

3.
柴油机燃烧过程中喷雾内部的物理化学过程非常复杂,传热、蒸发、扩散、流动等物理过程控制着化学反应,影响着火和燃烧过程,进而决定着发动机的动力性、经济性以及排放性能。利用CFD分析软件FIRE对一台直列6缸增压柴油机的喷雾与燃烧过程进行模拟。研究了喷雾锥角对燃烧过程的影响规律以及喷雾锥角对碳烟和NOx生成的影响。  相似文献   

4.
斯特林发动机天然气扩散燃烧的数值分析和试验   总被引:2,自引:0,他引:2  
汪海贵  朱辰元  薛飞  刘京  阎珽 《柴油机》2005,27(1):37-42
应用数值模拟,对斯特林发动机中天然气的燃烧进行了全尺寸三维模拟。分析和优化对斯特林发动机燃烧室速度场、温度场分布以及排放有着重要影响的参数,如空气预热温度、旋流数和过量空气系数等。预测了优化后燃烧室的速度场、温度场分布,以及NO_x和CO的浓度场分布,得到了吸热部件周围的流动形式。模拟结果为抑制NOx和CO的排放和提高换热效率以及发动机的效率提供了指导,设计结果得到了试验验证。  相似文献   

5.
利用AVL FIRE软件对不同结构的进气道方案进行瞬态模拟计算,分析了进气道结构对天然气发动机燃烧过程的影响规律。研究结果表明,湍动能的变化与涡流比的大小关系不大,主要受Z方向滚流比的影响;燃烧速率快慢与缸内平均湍动能高低并非一一对应关系,燃烧速率主要依赖于火花塞周围的湍动能分布情况。通过改进气道Ⅲ方案与气门座圈连接处的入射角度,缸内滚流与涡流运动均明显增强,且缸内湍动能分布显著改善,提升了化学反应速率与火焰传播速度,燃烧特性显著改善。两个试制进气道方案的台架试验结果表明,气道Ⅲ改进方案能够改善天然气发动机的经济性、可靠性与高速动力性。  相似文献   

6.
采用漩涡破碎(EBU)燃烧模型、κ-ε双方程湍流模型及SIMPLEC算法对等离子发生器内部的燃烧流场进行了数值模拟,得到温度场、压力场以及湍流脉动动能、湍流平均动能耗散率等参数分布图。  相似文献   

7.
基于AVL发动机专用数值模拟软件BOOST,建立了单缸直喷氢发动机模型.模拟结果和实验结果的对比表明,所建BOOST模型具有较高的可信度.通过改变发动机的主要结构参数和运转参数,研究氢发动机的燃烧特性以及它们对氢发动机动力性和经济性的影响.  相似文献   

8.
燃气轮机燃烧室燃烧流场的数值计算   总被引:3,自引:0,他引:3  
李金英  王滨  穆勇 《汽轮机技术》2008,50(3):176-178
对某型燃气轮机燃烧室的燃烧流场运用FLUENT软件进行了数值模拟.在模拟过程中采用了标准k-ε湍流模型、"简单化学反应系统"模型和"快速化学反应"假设,用SIMPLE算法进行压力一速度耦合求解,分析了不同负荷情况对燃烧效率、出口平均温度、过量空气系数及火焰长度的影响.计算结果能够很好地反映燃烧室燃烧流动的特点,对预测燃烧室内的燃烧流动及燃烧室的优化有一定参考价值.  相似文献   

9.
柴油/甲醇二元燃料发动机缸内燃烧数值模拟   总被引:1,自引:0,他引:1  
为研究柴油/甲醇二元燃料的缸内燃烧过程,基于对二元燃料燃烧特征的分析,发展了湍流耦合反应动力学的柴油/甲醇二元燃料缸内燃烧机理和燃烧模型.基于一个已有的甲醇/正庚烷二元燃料燃烧机理,进一步提高了机理的预测精度,燃烧模型通过计算混合时间尺度和化学反应时间尺度来衡量燃烧的受控因素,其中化学反应时间尺度以熵增率衡量.通过发动机试验对模型进行了标定和验证,结果表明:该燃烧机理和燃烧模型能够很好地对纯柴油和柴油/甲醇二元燃料燃烧过程进行预测,包括随着甲醇比例的增加,滞燃期延长,甲醇火焰传播预混燃烧放热峰值逐渐明显.采用直接求解化学反应而不考虑湍流的燃烧模型,对燃烧进程的预测结果则随着甲醇量的增加而逐渐高于试验值.  相似文献   

10.
为了分析和研究氢发动机的运行特性,预测多种参数变化对性能的影响,对氢发动的燃烧过程建立零维模型,进行数值模拟。试验表明,模型的计算值和试验值具有良好的一致性,模拟计算弥补了试验测试中的不足,可以从更深层次地认识氢发动机的运行特性和规律。  相似文献   

11.
This paper presents an analytical investigation to study the effect of combustion duration on the engine's performance and emission characteristics using both gasoline and hydrogen fuels. Certain minimum value for the combustion duration was found beyond which the performance of the engine deteriorates. This combustion duration was also found to vary with engine speed for each type of fuel studied. This value should be maintained for best performance of the engine. The results show that the combustion duration of hydrogen is much less than that for gasoline. Further, with hydrogen fuel, the cylinder parameters reach its maximum/minimum values at shorter time than with gasoline fuels. Further shown in this study is the clear advantage of using hydrogen as fuel is its significant reduction in the specific fuel consumption. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The cycle variation characteristics of a port fuel injection hydrogen internal combustion engine (PFI-HICE) have been extensively investigated. The covariance of indicated mean effective pressure (COVimep) is the best parameter for evaluating the cycle variations in the PFI-HICE. COVimep decreases as fuel–air ratio increases from 1000 to 5500 rpm, and engine speed minimally affects COVimep. The effect of ignition advance angle on COVimep is determined by fuel–air ratio. The ignition advance angles that correspond to the minimum COVimep of the PFI-HICE decrease as fuel–air ratio increases. The effect of ignition advance angle on COVimep diminishes as fuel–air ratio increases. The COVimep of the PFI-HICE rapidly decreases as throttle increases when the throttle is less than 20%. Injection timing only slightly affects COVimep under high-speed conditions, and COVimep increases when hydrogen is injected in intake periods under low-speed conditions. These results indicate that studying COVimep improves the stability of PFI-HICEs.  相似文献   

13.
Hydrogen enhanced combustion (HEC) for internal combustion engine is known to be a simple mean for improving engine efficiency in fuel saving and cleaner exhaust. An onboard compact and high efficient methanol steam reformer is made and installed in the tailpipe of a vehicle to produce hydrogen continuously onboard by using the waste heat of the engine for heating up the reformer; this provides a practical device for the HEC to become a reality. This use of waste heat from engine enables an extremely high process efficiency of 113% to convert methanol (8.68 MJ) for 1.0 NM of hydrogen (9.83 MJ) and low cost of using hydrogen as an enhancer or as a fuel itself. The test results of HEC from the onboard hydrogen production are presented with 2 gasoline engine vehicles and 2 diesel engines; the results indicate a hike of engine efficiency in 15–25% fuel saving and a 40–50% pollutants reduction including 70% reduction of exhaust smoke. The use of hydrogen as an enhancer brings about 2–3 fold of net reductions in energy, carbon dioxide emission and fuel cost expense over the input of methanol feed for hydrogen production.  相似文献   

14.
In order to improve the limitation of evaluating the abnormal combustion problem of hydrogen internal combustion engine by single index, the abnormal combustion risk coefficient is proposed and defined based on AHP(Analytic Hierarchy Process)-entropy method. The abnormal combustion risk of PFI hydrogen internal combustion engine is comprehensively evaluated from multiple indexes such as the uniformity coefficient of the mixture, the temperature of the hot area, the maximum temperature rise rate, the residual amount of hydrogen in the intake port and the cylinder temperature at the end of the exhaust. The influence of hydrogen injection parameters on abnormal combustion was explored. The results show that the temperature and the maximum temperature rise rate in the hot area decrease first and then increase with the increase of hydrogen injection angle and hydrogen injection flow rate. Although large hydrogen injection angle and hydrogen injection flow rate can reduce the cylinder temperature at the end of exhaust, they will increase the residual hydrogen amount in the intake port. Appropriate hydrogen injection angle and hydrogen injection flow scheme can ensure that all parameters are at a better level, so that the risk coefficient of abnormal combustion decreases by 2.1%–5.5%, and the possibility of abnormal combustion is reduced.  相似文献   

15.
This study presents experimental results of engine performance, combustion and emissions in an SI engine fueled by gasoline-ethanol-hydrogen blends. In the experimental studies, engine performance and emission values were analyzed fueled by gasoline, gasoline-ethanol and gasoline-ethanol-hydrogen blends, respectively. When ethanol has been added volumetrically to gasoline 20% of ethanol (G80E20), engine performance and emissions have been worsened. However, the engine performance and emission values have been improved with the adding of hydrogen to blend. The results showed that the addition of hydrogen to the gasoline-ethanol blend improved the combustion process and improved the combustion efficiency, expanded the combustibility range of the gasoline-ethanol blend, reduced emissions. But, nitrogen oxide emission values increased with the adding of hydrogen.  相似文献   

16.
Combustion knock is one of the primary constraints limiting the performance of spark-ignition hydrogen fuelled internal combustion engines (H2-ICE) as it limits the torque output and efficiency, particularly as the equivalence ratio nears stoichiometric operation. Understanding the characteristic of combustion knock in a H2-ICE will provide better techniques for its detection, prevention and control while enabling operation at conditions of improved efficiency.

Engine studies examining combustion knock characteristics were conducted with hydrogen and gasoline fuels in a port-injected, spark-ignited, single cylinder cooperative fuel research (CFR) engine. Characterization of the signals at varying levels of combustion knock from cylinder pressure and a block mounted piezoelectric accelerometer were conducted including frequency, signal intensity, and statistical attributes. Further, through the comparisons with gasoline combustion knock, it was found that knock detection techniques used for gasoline engines, can be applied to a H2-ICE with appropriate modifications. This work provides insight for further development in real time knock detection. This would help in improving reliability of hydrogen engines while allowing the engine to be operated closer to combustion knock limits to increase engine performance and reducing possibility of engine damage due to knock.  相似文献   


17.
As a practical solution to reduce the emission pollution and energy crisis, the research and development of HICE has been processed in several decades. The focus of this paper is trying to explore the new features of the combustion duration in HICE not only by engine experiment, but also by analysis of the physical properties of hydrogen, especially the obvious difference from that of gasoline. Firstly, the laminar flame speed difference between hydrogen and gasoline was studied and discussed. Secondly, a distinctive rule of combustion duration in HICE was discovered by analyzing the experiment data. Finally, as a key reference point to the HICE operation, a new characteristic of the location of 50% mixture combust up was proposed and analyzed, this will be helpful for the calibration of optimum ignition timing.  相似文献   

18.
The paper summarized the work on hydrogen enriched hydrocarbons combustion and its application in engines. The progress and understanding on laminar burning velocity, flame instability, flame structure flame and chemical kinetics were presented. Based on fundamental combustion, both homogeneous spark-ignition engine and direct-injection spark-ignition engine fueled with natural gas-hydrogen blends were conducted and the technical route of natural gas-hydrogen combined with exhaust gas recirculation was proposed which experimentally demonstrated benefits on both thermal efficiency improvement and emissions reduction.  相似文献   

19.
In this paper the combustion and ignition process in the hydrogen-fueled peripheral-ported rotary engine with single and dual laser ignition systems was studied numerically. The computational method was established for the process simulation including interaction between turbulence and chemical reactions. The detailed chemical kinetic model of hydrogen combustion was used. It was shown that the ignition and combustion process in the H2-fueled rotary engine is highly transient with specific distortion and stretching of the combustion front in the combustion chamber due to complex motion of the rotor relative to the engine housing. The single and dual laser ignition systems were simulated to compare the ignition efficiency and the rate of hydrogen burning out. The evaluation of pressure in the combustion chamber was performed and compared with the experimental data obtained for the rotary engine fueled by natural gas. It was shown that the H2-fueled rotary engine with the dual laser ignition system has potential application in alternative automotive industry due to high efficiency and near-zero carbon-based emission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号