首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study investigated the effects of adding an anaerobic fungus (Piromyces sp FNG5; isolated from the faeces of a wild blue bull) to the rumen fluid of buffaloes consuming a basal diet of wheat straw and concentrates on in vitro enzyme activities, fermentation and degradation of tannins and tannin‐rich tree leaves and wheat straw. In experiment 1, strained rumen fluid was incubated for 24 and 48 h, in quadruplicate, with or without fungal culture using condensed tannin‐rich Bauhinia variegata leaves as substrates. In experiment 2, in vitro incubation medium containing wheat straw and different concentrations of added tannic acid (0–1.2 mg mL?1) were incubated for 48 h, in quadruplicate, with strained buffalo rumen fluid with or without fungal culture. In experiment 3, tolerance of the fungal isolate to tannic acid was tested by estimating fungal growth in pure culture medium containing different concentrations (0–50 g L?1) of tannic acid. In in vitro studies with Bauhinia variegata tree leaves, addition of the fungal isolate to buffalo strained rumen liquor resulted in significant (P < 0.01) increase in neutral detergent fibre (NDF) digestibility and activities of carboxymethyl cellulase (P < 0.05) and xylanase (P < 0.05) at 24 h fermentation. There was 12.35% increase (P < 0.01) in condensed tannin (CT) degradation on addition of the fungal isolate at 48 h fermentation. In in vitro studies with wheat straw, addition of the fungus caused an increase in apparent digestibility (P < 0.01), true digestibility (P < 0.05), NDF digestibility (P < 0.05), activities of carboxymethyl cellulase (P < 0.001), β‐glucosidase (P < 0.001), xylanase (P < 0.001), acetyl esterase (P < 0.001) and degradation of tannic acid (P < 0.05). Rumen liquor from buffaloes which had never been exposed to tannin‐containing diet had been found to have substantial inherent tannic acid‐degrading ability (degraded 55.3% of added tannic acid within 24 h of fermentation). The fungus could tolerate tannic acid concentration up to 20 g L?1 in growth medium. The results of this study suggest that introduction of an anaerobic fungal isolate with superior lignocellulolytic activity isolated from the faeces of a wild herbivore may improve fibre digestion from tannin‐containing feeds and degradation of tannins in the rumen of buffaloes. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
The ability of Lactobacillus plantarum CECT 748T to degrade hydrolysable tannins was evaluated. Three commercial tannic acids were incubated in presence of cell-free extracts containing soluble proteins from L. plantarum. By HPLC analyses, almost a complete tannic acid degradation was observed in the three samples assayed. By using HPLC-DAD/ESI-MS, we partially determined the composition of tannic acid from Quercus infectoria galls. This tannic acid is a gallotannin mainly composed of monomers to tetramers of gallic acid. We studied the mechanism of its degradation by L. plantarum. The results obtained in this work indicated that L. plantarum degrades gallotannins by depolymerisation of high molecular weight tannins and a reduction of low molecular weight tannins. Gallic acid and pyrogallol were detected as final metabolic intermediates. Due to the potential health beneficial effects, the ability to degrade tannic acid is an interesting property in this food lactic acid bacteria.  相似文献   

3.
Lactic acid bacteria (LAB) have been used as ingredients of functional foods to promote health and prevent diseases because of their beneficial effects. This study aimed to investigate the antioxidative effects of LAB on the hepatotoxicity in D‐galactose‐induced aging mice. LAB were isolated from the traditional Chinese fermented foods and screened by the tolerance of hydrogen peroxide (H2O2). Male ICR (Institute of Cancer Research) mice were subcutaneously injected with D‐galactose for 5 weeks and then gastric gavage with LAB for 6 weeks. The results showed that Lactobacillus plantarum AR113 and AR501, and Pediococcu pentosaceus AR243 could tolerate up to 1.5 mM H2O2 in vitro, and they could live through simulated gastrointestinal tract (GIT) to colonizing the GIT of host. In vivo, oral administration of L. plantarum AR113 and AR501 improved the antioxidant status of D‐galactose‐induced oxidative stress mice such as alleviated liver damages and reduced abnormal activities of superoxide dismutase, glutathione peroxidase, and catalase to normal levels. In addition, L. plantarum AR501 markedly elevated the gene expression of nuclear factor erythroid‐2‐related factor 2 and upregulated the expressions of several antioxidant genes such as glutathione reductase, glutathione S‐transferase, glutamate‐cysteine ligase catalytic subunit, glutamate‐cysteine ligase modifier subunit, and NAD(P)H quinone oxidoreductase 1 in the liver of an aging mice. Therefore, L. plantarum AR501 could be a good candidate for producing antiaging functional foods.  相似文献   

4.
The oxidative stability and lipid modifications of Doogh prepared with Lactobacillus plantarum LS5 and control Doogh were compared during storage for 22 days. In vitro scavenging activity against 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radicals showed that L. plantarum LS5 had radical scavenging activities (49.6%). Peroxide value, conjugated diene value and anisidine value measurements in Doogh lipid samples in combination with Fourier transform infrared spectroscopy demonstrated that Doogh prepared with L. plantarum LS5 was more stable than the control against formation of primary and secondary oxidation products. Furthermore, higher concentrations of short‐chain fatty acids (butyric and caproic) and unsaturated fatty acids were found in Doogh treated with L. plantarum LS5. Changes in the thermograms of all samples were also observed. Results of differential scanning calorimetry indicated that melting points of lipids from treated Doogh were lower than for the control. It was concluded that L. plantarum LS5 could be used as a natural preservative in functional dairy products and could beneficially affect the consumer by providing dietary sources of antioxidants.  相似文献   

5.
ABSTRACT: The aim of the study was to identify lactic acid bacteria and Gram‐positive catalase‐positive cocci isolated from Turkish dry fermented sausage (sucuk) produced by 7 different manufacturers without using starter culture. A total of 129 isolates of lactic acid bacteria were identified phenotypically. Lactobacillus plantarum was the dominant species (45.7%) followed by L. curvatus (10.9%) and L. fermentum (9.3%). Pediococcus isolates were identified as P. pentosaceus and P. acidilactici. All the isolates of gram‐positive and catalase‐positive cocci (123 isolates) were classified as Staphylococcus except for 1 isolate assigned to Kocuria rosea. The species isolated most often were S. xylosus (41.5%) and S. saprophyticus (28.5%). Four isolates were identified as S. equorum (3.3%), 1 isolate was assigned to S. carnosus (0.8%).  相似文献   

6.
麦麸是小麦加工的主要副产物,营养丰富且产量大,采用乳酸菌处理麦麸可提高其附加值。为明确乳酸菌发酵对麦麸各组分的影响,作者采用植物乳杆菌、鼠李糖乳杆菌、戊糖片球菌和布氏乳杆菌分别对麦麸进行固态发酵,在48 h内每隔8 h取样,分析可溶性膳食纤维、粗蛋白质、淀粉、总酚、植酸等成分的质量分数及DPPH自由基清除能力的动态变化。结果表明,在麦麸基质中,4株乳酸菌在24 h内生长较为迅速;麦麸经乳酸菌发酵后可溶性膳食纤维质量分数显著提高,其中布氏乳杆菌发酵48 h后可溶性膳食纤维质量分数由4.72%增加至6.58%;随着发酵时间的增加,麦麸中淀粉质量分数逐渐降低,粗蛋白质量分数先增加后降低最后趋于稳定;植物乳杆菌在提高麦麸多酚质量分数方面有更好的效果,多酚质量分数由1.34 mg/g增加至3.86 mg/g,麦麸抗氧化活性显著增加;此外,乳酸菌发酵麦麸可显著降低其植酸质量分数。综合而言,植物乳杆菌和布氏乳杆菌在提高麦麸的营养特性方面具有较好的效果,可有效改善麦麸的综合利用价值。  相似文献   

7.
Phenolic compounds of ten genotypes of dry beans (Phaseolus vulgaris L.) were investigated using four different methods. Assayable tannins using the 0.5% vanillin assay ranged from 49–306 mg catechin equivalents/100 g beans. Significant differences were observed for tannins measured by the vanillin and the protein precipitable phenol tests. Of the two redox assays, the Prussian blue assay gave significantly higher total phenol values than the Folin-Ciocalteu assay. Both these reagents were more sensitive to tannic acid than to catechin. Although tannin values varied 2–3 fold for a given variety, excellent correlation was observed between the different assays employed for bean tannin analysis.  相似文献   

8.
Non‐O157 Shiga toxin‐producing Escherichia coli (STEC) are a frequent cause of STEC‐related infections such as diarrhoea. Fermentation by presumptive probiotic Lactobacillus plantarum strain B411 isolated from cereal fermentation was investigated to prevent the growth of acid‐adapted (AA) and non‐acid‐adapted (NAA) non‐O157 STEC in traditionally fermented maize gruel, a widely used complementary food in Africa. L. plantarum strain B411 possessed probiotic characteristics and antimicrobial activity against selected pathogenic bacteria. Growth of AA and NAA non‐O157 STEC strains was substantially inhibited by 3.6 and 4.8 log reductions, respectively, in the maize gruel fermented with the L. plantarum B411, while their growth was only inhibited by 1.0 and 1.2 log reductions, respectively, by traditional fermentation alone. Inclusion of fermentative strains of L. plantarum exhibiting probiotic activity is a feasible method to ensure safety of traditionally fermented African cereal porridges through inhibition of non‐O157 STEC.  相似文献   

9.
The ability of goat's milk fermented with a Lactobacillus plantarum strain B411, and in combination with commercial starter culture, to inhibit acid‐adapted (AA) and non‐acid‐adapted (NAA) environmental non‐O157 STEC strains was investigated. Acid‐adapted and NAA non‐O157 STEC strains were not inhibited in the L. plantarum‐fermented goat's milk, while the goat's milk fermented with the combination of L. plantarum and starter culture inhibited AA more than NAA non‐O157 STEC strains. Environmental acid‐tolerant non‐O157 STEC strains were not inhibited by L. plantarum, starter culture or combination of starter culture with L. plantarum unless they were subjected to prior acid adaptation such as backslopping.  相似文献   

10.
Sixty-three strains of the taxonomically related species Lactobacillus plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, L. paraplantarum and L. pentosus isolated from sourdoughs and other food and non-food sources and 14 strains of other members of the genus Lactobacillus were screened for their tolerance of acid, alkaline, heat, oxidative, osmotic, detergent and starvation stresses in order to evaluate the diversity of stress response. Most strains of the L. plantarum group were highly tolerant of acid, alkaline and osmotic stress and highly sensitive to detergent stress, while a larger diversity was found for other stress. Multivariate analysis allowed grouping the strains in clusters with similar response patterns. Stress response patterns in the L. plantarum group were similar to those of species of the L. casei/L. paracasei group but clearly different from those of other mesophilic Lactobacillus. No relationship was found between grouping obtained on the basis of stress response patterns and by genotypic fingerprinting (rep-PCR), nor with the taxonomic position or isolation source of the strains. Further experiments with selected strains showed that exponential phase cells were generally but not always more sensitive than stationary phase cells. The ability to grow under stressful conditions showed a slightly better correlation with the ecological conditions prevailing in the isolation niches of the strains.This study will be the basis for further investigations to identify and exploit the basis of diversity in the stress response of lactic acid bacteria.  相似文献   

11.
Abstract: Antimicrobial activities of chitosan against lactic acid bacteria were studied to apply for controlling dongchimi (whole-radish juicy kimchi) fermentation to prevent over-ripening. Antimicrobial activity of chitosan against lactic acid bacteria such as Leuconostoc mesenteroides and Lactobacillus plantarum was assayed at 10, 20, 30, and 40 mg/L concentration in the medium. The addition of 40 mg/L of the chitosan prepared at 140 °C for 10 min showed strong inhibitory effect on the growth of L. mesenteroides and L. plantarum. The effects of addition of chitosan to dongchimi have also been studied during fermentation at different temperatures of 4, 10, and 20 °C. Addition of chitosan decreased markedly viable cell counts of lactic acid bacteria such as Leuconostoc spp. and Lactobacillus spp. at the initial stage. Subsequently the lactic acid bacteria recovered the growth to the same level as non-chitosan treated dongchimi. During the dongchimi fermentation, the addition of chitosan at larger quantity up to 1000 mg/L (CS1000) prolonged the palatable fermentation period. Addition of chitosan in the dongchimi seemed to inhibit the growth of lactic acid bacteria, thereby lowering the acid content. It, therefore, caused the shelf life to be extended and resulted in a prolonged palatable period for the dongchimi.  相似文献   

12.
Abstract: In the present study, a total of 116 lactic acid bacteria (LAB) strains isolated from Mill flour and fermented cassava were screened for their antifungal activity. Three strains among 116 were selected for their strongest inhibitory activity against food molds. These 3 strains were Lactobacillus plantarum VE56, Weissella cibaria FMF4B16, and W. paramesenteroides LC11. The compounds responsible for the antifungal activity were investigated. The strains displayed an inhibitory activity against targeted molds at acidic pH. However, the influence of organic acids was rejected according to the calculated minimal inhibitory concentration (MIC). Antifungal compounds were investigated in the cell‐free supernatants and phenyllactic acid (PLA) was detected in different amounts with a maximal concentration for Lb. plantarum VE56 (0.56 mM). Hydroxy fatty acid, such as 2‐hydroxy‐4‐methylpentanoic acid, was also produced and involved in the inhibitory activity of Lb. plantarum VE56 and W. paramesenteroides LC11. Antifungal LAB are known to produce PLA and 3‐hydroxy fatty acids and other organic acids with antifungal activity. This short communication focuses on antifungal activity from Weissella genus. The antifungal activity was attributed to antifungal compounds identified such as PLA, 2‐hydroxy‐4‐methylpentanoic acid, and other organic acids. Nevertheless, the concentration produced in the cell‐free supernatant was too low to compare to their MIC, suggesting that the inhibitory activity was caused by a synergy of these different compounds. Practical Application: Antifungal LAB are interesting to prevent food spoilage in fermented food and prolong their shelf life. In this way, chemical preservatives could be avoided and replaced by natural preservatives.  相似文献   

13.
Traditionally Piper betle L. leaves have been used in India for fermenting certain foods. In our previous study, while fermenting Uttapam batter along with Piper betle L. var. Pachaikodi leaves led to suppression of gas formation and altered Lactic acid bacteria profile, especially in bacilli isolates compared to those observed in plain Uttapam batter fermentation. Hence, the aim of the present study was to understand the rationale behind these changes through characterization of Lactobacillus isolates from Piper betle L. var. Pachaikodi and also the leaves extracts for antimicrobial activity. Out of 72 isolates obtained from the betel leaves, only 10 isolates were bacilli which were chosen for their molecular characterization and to elucidate their inhibitory effects against major food borne pathogens and gas-forming bacteria and to compare with the effect of betel leaves extract. Random amplified polymorphic DNA (RAPD)-PCR and phenotype analysis was used to differentiate the isolates at strain level, 16S rRNA gene sequence for phylogenetic analysis and species-specific multiplex PCR analysis for sub-species identification. All isolates were identified as Lactobacillus plantarum subsp. plantarum. All Lactobacillus isolates were indigenous to leaf as they were resistant to betel leaves extract and showed maximum activity against some LAB and non-LAB indicator strains except Lactobacillus plantarum MTCC 6160 which was resistant. Among them, KJB23, 36 and 47 were the most effective. Particularly, the isolate KJB23 and ethanolic betal leaf extract showed rivaling inhibitory activity against major food borne pathogens, while dissimilar activity against gas forming bacteria. This study revealed that either Piper betle L. leaf or Lactobacillus strains from the leaves can be valuable for food applications when added to fermented products.  相似文献   

14.
BACKGROUND: Food‐isolated lactic acid bacteria can transform ferulic acid (FA) into several products. Since quantification of these metabolites during the different bacterial growth phases is lacking, the aim of this study was to identify and quantify conversion products of FA and to follow the kinetics of FA metabolism during growth of Lactobacillus plantarum and Lactobacillus collinoides. RESULTS: Lactobacillus plantarum and Lactobacillus collinoides were incubated in MRS broth, to which different amounts of FA were added (final concentrations of 0, 0.5, 1.5 and 3 mmol L?1), at 30 °C until the late stationary phase. Lactobacillus plantarum metabolised FA into 4‐vinylguaiacol (4‐VG) and hydroferulic acid (HFA). Conversion to 4‐VG started simultaneously with the degradation of FA, while formation of HFA started in the mid‐exponential phase. Lactobacillus collinoides only formed 4‐VG, mainly in the stationary phase. No significant effect of the different amounts of FA was seen on the growth and fermentation characteristics of both bacteria. CONCLUSION: The results demonstrate that both bacteria are able to convert FA. However, start of conversion differs between the two strains. The different amounts of FA had no influence on the growth and fermentation characteristics of both bacteria. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
The antimicrobial potential of whey protein isolate (WPI) edible films containing 1–4% (v/v) Zataria multiflora Boiss. essential oil (EO) on food‐borne pathogenic bacteria (Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Bacillus cereus) and probiotic bacteria (Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantarum and Lactobacillus casei subsp. casei) was evaluated. WPI films incorporated with 2% (v/v) of this EO inhibited the growth of all tested pathogenic bacteria and gram‐negative bacteria were more sensitive than gram‐positive bacteria. Incorporation of the EO at higher than 2% (v/v) showed significant antimicrobial effects (P < 0.05) for S. enteritidis and L. acidophilus. The growth of all probiotic lactic acid‐producing bacteria also inhibited when 2% of the EO was added. Comparison of an image processing‐based method with conventional method for measuring of inhibitory effects of edible films exhibited high correlations (R2 ≥ 0.876) between the two methods. These results revealed that Z. multiflora Boiss. EO is a good antimicrobial additive for some food applications when included into WPI edible films.  相似文献   

16.
BACKGROUND: Wheat grains are a rich source of dietary fibres, particularly in the western human diet. Many of the health effects attributed to dietary fibres are believed to be related to their microbial fermentation in the gut. This study evaluated the ability of two potentially probiotic strains, Lactobacillus plantarum L12 and Bifidobacterium pseudocatenulatum B7003, to ferment soluble dietary fibres (SDFs) from modern and ancient durum‐type wheat grains. RESULTS: Fibre microbial utilisation was highly variable and dependent on the strain. SDFs from the varieties Svevo and Solex supported the growth of L. plantarum L12 the best, whereas those from the varieties Anco Marzio, Solex and Kamut® Khorasan were good carbohydrate substrates for B. pseudocatenulatum B7003. The highest prebiotic activity scores (describing the extent to which prebiotics support selective growth of probiotics) for B7003 were obtained with SDFs from the varieties Solex (0.57), Kamut® Khorasan (0.56) and Iride (0.55), whereas for L12 the highest scores were achieved with the varieties Orobel (0.63), Kamut® Khorasan (0.56) and Solex (0.53). CONCLUSION: The present study has identified some SDFs from durum‐type wheat grains as suitable prebiotic substrates for the selective proliferation of B. pseudocatenulatum B7003 and L. plantarum L12 in vitro. The results provide the basis for the potential utilisation of wheat‐based prebiotics as a component of synbiotic formulations. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
Abstract: The effect of Lactobacillus plantarum (FI8595), Lactococcus lactis subsp. cremoris MG 1363), Lactococcus lactis subsp. lactis (IL 1403), and Streptococcus thermophilus on cadaverine and other biogenic amine production by foodborne pathogens was investigated lysine decarboxylase broth. Both of lactic acid bacteria and foodborne pathogens used (especially Staphylococcus aureus, E. coli, Lc. lactis subsp. lactis and Lb. plantarum) had an ability to convert aminoacids into biogenic amine. The conversion of lysine into cadaverine was the highest (167.11 mg/L) by Lactobacillus spp. Gram‐positive bacteria generally had a greater ability to produce cadaverine with corresponding value of 46.26, 53.76, and 154.54 mg/L for Enterococcus faecalis, S. aureus, and Listeria monocytogenes, respectively. Significant variations on biogenic amine production were observed in the presence of lactic acid bacteria strains (P < 0.05). The role of lactic acid bacteria on biogenic amine production by foodborne pathogens varied depending on strains and specific amine. Cadaverine accumulation by Enterobactericeae was increased in the presence of lactic acid bacteria strains except for St. thermophilus, which induced 2‐fold lower cadaverine production by S. Paratyphi A. Lc. lactis subsp. lactis and Lc. lactis subsp. cremoris induced 10‐fold higher increases in histamine for E. coli and K. pneumoniae, respectively. Lactic acid bacteria resulted in strong increases in cadaverine production by P. aeruginosa, although remarkable decreases were observed for histamine, spermidine, dopamine, agmatine, and TMA in the presence of lactic acid bacteria in lysine decarboxylase broth . The result of the study showed that amine positive lactic acid bacteria strains in fermented food led to significant amine accumulation by contaminant bacteria and their accumulation in food product may be controlled by the use of proper starters with amine‐negative activity. Practical Application: Foodborne pathogens and certain lactic acid bacteria are particularly active in the production of biogenic amines. Most of the strains of bacteria possess more than 1 amino acid decarboxylase activity under lysine enrichment culture conditions. Lactic acid bacteria strains had a significant role on increase putrescine accumulation by foodborne pathogens. The increased production of biogenic amines in mixed culture is the result of presence of amine positive lactic acid bacteria strains. The addition of a proper selected starter culture with amine‐negative activity is advisable to produce safer fermented food with low contents of biogenic amines.  相似文献   

18.
Two experiments were carried out to study the influence of storage time, glucose and urea additions ( Experiment 1 ) and lactic acid bacteria inoculation with and without glucose addition ( Experiment 2 ) on the production of lactate isomers and fermentation quality of guineagrass (Panicum maximum Jacq) silage. All silages in both experiments were well preserved, as indicated by lower pH and little or no butyric acid. In Experiment 1 , addition of glucose or urea did not significantly affect the pH of silages (P > 0.05). Urea addition tended to reduce acetic acid content and greatly increased NH3 − N content. L (+)‐Lactic acid was produced predominantly in the first 3 days of ensiling, but D (−)‐lactic acid increased gradually until 1 month after ensiling. Thereafter all silages became stable. In Experiment 2 , inoculation of Lactobacillus casei or L rhamnosus with or without glucose reduced D (−)‐lactic acid and increased L (+)‐lactic acid of silages. The proportions of L (+)‐lactic acid in these silages were higher than 80% of total lactic acid. L plantarum alone or in combination with glucose promoted D (−)‐lactic acid production and decreased the proportion of L (+)‐lactic acid. Glucose addition alone tended to reduce the proportion of L (+)‐lactic acid in both experiments. © 2000 Society of Chemical Industry  相似文献   

19.
Tannin contents of stems, flowers and leaves of four shrub species (Erica arborea, Erica australis, Cytisus cantabricus and Genista occidentalis) were chemically assessed using two colorimetric assays (butanol–HCl and Folin–Ciocalteu) and several standards (tannic acid, purified quebracho condensed tannins (CT) and purified CT extracted from each species). A method based on the biological activity of tannins in the rumen was also used for assaying tannins. Depending on the species, the use of quebracho tannin as standard over‐ or underestimated CT contents, in comparison to the use of the respective internal standard. However, the high correlationship observed between in vitro gas production in the presence or absence of polyethylene glycol (PEG) and CT contents estimated from quebracho suggests that this standard could be used for a quicker estimate of the nutritive value of tannin‐containing plants. Tannin contents obtained by the Folin–Ciocalteu method, using tannic acid as standard, were also related to their activity on rumen fermentation. The use of the in vitro gas production technique, in the absence or presence of PEG, may provide more useful information than the chemical assays when the final aim of tannin analysis is to assess the nutritive value of feedstuffs for ruminants. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
The inefficiency of protein utilisation by ruminants fed protein concentrates (based on legume meals) causes serious economic loss and environmental damage owing to their rapid hydrolysis and deamination in the rumen. Thus efforts aimed at slowing the ruminal fermentation of such feeds are needed, and recent studies have observed potentially positive effects of tannins on ruminant nutrition under certain circumstances. Tannins are a complex group of naturally occurring plant polyphenols characterised by their ability to bind with proteins. This property of tannins is considered responsible for the decreased ruminal digestibility of forages both in vivo and in vitro. Under that perspective, commercial tannic acid was added at three proportions (10, 25 and 50 g kg?1 on a dry matter basis) to four different legume meals (horse bean, kidney bean, soybean and pea), and the effect on in situ dry matter and crude protein ruminal disappearance was assessed. The results confirmed the dose‐dependent (although not persistent after 48 h) slowing of in situ digestibility, this effect being significant at the highest tannin treatment when compared with untreated samples. Scanning electron microscopy revealed that soybean seed endosperm cell walls were protected from digestion by the ruminal microbiota, while the digestion of starch granules was relatively unaffected by tannic acid. Electrophoresis of the protein fractions confirmed the lower digestibility of tannin‐treated seeds as well as the relative lack of alteration of the electrophoretic profile of individual proteins. Implications for the digestion of concentrates in ruminants are discussed. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号