首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳钌复合材料在碱性电化学电容中的应用   总被引:3,自引:0,他引:3  
采取溶胶凝胶法在活性炭表面原位合成RuO2·xH2O,经150℃热处理后制成的碳钌复合材料首次应用于碱性电化学电容器中。经电化学测试表明,碳钌电极在碱液中具有良好的容量性质和高功率放电特性,当电流密度为1.0A/g,钌含量为15%(质量分数,下同)的复合材料作为碱性电容的正极,其单电极比容量可达274F/g,是空白活性炭材料的1.22倍,并可较好地抑制电容自放电;该复合材料作为碱性电容的负极,相同电流条件下虽然也具有较高的单电极比容量(278F/g),但电容的自放电现象较为严重。  相似文献   

2.
采用"一步水热法"合成了不同原料配比的MoS2/CoS2二元复合材料,并研究了其用作超级电容器电极材料的电化学性能。研究结果显示,当原料中Mo:Co (摩尔比)=2:1时,该复合材料具有最优的循环稳定性能和最高的比电容,在2 mV/s扫描速度下,比电容为549 F/g;或1A/g电流密度下,比电容为434 F/g。微观结构分析表明,该复合材料主要由八面体形状的CoS2和花状的MoS2组成。综合分析可知,优异的电化学性能主要归因于2种组元材料的协同效应、大的比表面积以及可调控的组分含量等因素。  相似文献   

3.
采用水热电沉积法在泡沫镍基体上原位沉积Co_9S_8薄膜,并对其形貌、组成、结构和电化学性能进行表征和测试。结果表明,镍基Co_9S_8薄膜呈花瓣片状,并具有优异的电化学性能,其在电流密度为10mA/cm~2时,比电容可高达2538.7 F/g。即使电流密度扩大至50 mA/cm~2时,比电容依然可达1930.7 F/g。经过1000次循环(电流密度为20 mA/cm2),比电容仍可达为1825.2 F/g,电容保有率72.8%,经过1500次循环后,电容保有率61.4%。  相似文献   

4.
用电沉积方法在铜集流体上分别制备出不同厚度(2,0.5,0.25,0.12μm)的锡薄膜电极。用扫描电镜观察其表面形貌、以充放电实验比较其性能。结果表明,减小Sn薄膜厚度可改善电极的循环性能,但首次容量损失也增大。0.5μm厚的Sn薄膜具有最高的放电容量和较好的循环稳定性;其首次放电比容量为749mAh/g,40次循环时放电比容量仍保持578mAh/g。  相似文献   

5.
通过电泳沉积和电化学还原相耦合的方法制备柔性的石墨烯自支撑薄膜电极。首先,通过电沉积的方法在石墨基底上制备氧化石墨烯薄膜,然后通过对氧化石墨烯薄膜进行电化学还原,得到电容性能优异的石墨烯薄膜电极材料。通过SEM、XRD、FT-IR和电化学测试对石墨烯的表面形貌、结构和电容性能进行表征。结果表明:制备的石墨烯电容性能良好,在1 mol/L的硫酸电解液中,循环伏安扫速为10 mV/s时,比电容为254 F/g;当电流密度为83.3 A/g时,比电容能保持在132 F/g;最大功率密度可达39.1 kW/kg,能量密度为11.8 W·h/kg;充放电循环1000次后,电容能保持97.02%,表明该石墨烯薄膜电极材料具有优异的循环稳定性能。  相似文献   

6.
通过水热法在150℃保温6h和9h制备了纳米带状氧化锰与碳复合材料(MnO(OH)/C)。表征和分析结果表明,MnO(OH)为纳米带状结构,直径为4~8nm,长度为几微米,碳为近似球形结构,直径约为50nm。以1.0mol/L的Na_2SO_4溶液为电解液,以所制备的MnO(OH)/C复合材料为工作电极,对其超级电容器循环伏安和恒流充放电性能进行了分析。结果表明,在0.2A/g的电流密度下,电极材料的比电容可达到116.3F/g,当电流密度增加至2.0A/g时,其比电容保持率可达82.6%。  相似文献   

7.
通过密封加热熔融的方式制备了添加CNT的活性炭/硫锂离子电池正极活性材料,并对其进行PEG包覆复合改性,制备了C-CNT/S(PEG)正极复合材料。X射线衍射(XRD)图谱显示复合材料具有较强的非晶结构,且单质硫分散在碳材料的微孔之中。扫描电镜(SEM)显示CNT均匀分散在复合材料之中,并形成了三维导电结构。放电比容量测试显示CNT的加入提高了复合材料的放电比容量;PEG包覆的复合改性材料首次放电比容量高达1371.1 m Ah/g,循环50次后放电比容量为662.8 m Ah/g。说明添加CNT及PEG包覆复合改性,使活性炭/硫正极材料的电化学性能显著提高。  相似文献   

8.
用化学聚合法合成聚苯胺(PAn),并考察其在LiCoO2和LiMn2O<,4>正极中的双重功能.结果表明:在优化条件下PAn的产率y=94.06%、导电率σ=18.39 S/cm,大于乙炔黑(AB)的导电率σ=7.77 S/cm;以制备的PAn为锂离子电池正极活性材料,在不添加其他导电剂对其进行恒电流充、放电试验(电流密度J=15 mA/g)时,第三循环的比放电容量D3=60.8mA·h/g、充、放电效率n3=94.56%;PAn在正极中兼有活性材料的功能;以LiCoO2和尖晶石LiMn2O<,4>为正极活性材料,以PAn替代AB作为导电剂进行恒电流充、放电试验,在电流密度分别为15、30、45和60 mA/g时,比充、放电容量都增大,表明正极的极化程度减小;正极在经过较大电流密度(60 mA/g)充、放电后,再以小电流密度(15 ma/g)进行充、放电时,比充、放电容量几乎没有变化,表明经较大电流密度(60 mA/g)充、放电后,LiCoO2和尖晶石LiMn2O<,4>的贮锂结构没有改变.  相似文献   

9.
王廷河 《铸造技术》2014,(3):442-444
以蔗糖为碳源,乙二醇为溶剂,采用热溶剂法制得了正极复合材料LiFePO4/C,并对其充放电行为进行了研究。结果表明,受含碳的细化颗粒影响,LiFePO4/C正极材料的导电性大幅度提高。首次充、放电比容量与理论值接近,并且具有良好的循环稳定性。  相似文献   

10.
采用原位诱导法制备得到了一系列x Li M_2O_4?(1-x)Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2(M=Ni,Co,Mn;x=0,0.1,0.2,0.3,0.4,0.5)尖晶石/层状异质结构复合材料。借助X射线衍射、扫描电镜、差示扫描量热仪、恒电流间歇滴定技术和恒电流充放电测试表征手段对材料的晶体结构、微观形貌和电化学性能进行了研究。电化学性能结果表明:x=0.2材料的倍率性能和循环性能最佳,在2.7~4.3 V、1C下循环100次后,放电比容量为137 m A?h/g,容量保持率为93%;10C时的放电比容量为112 m A?h/g,相比于原始Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2材料在10C的放电比容量(95 m A?h/g)有较大提高。此外,快充慢放能力测试也证实了该材料的结构稳定,其在5C充、1C放的充放电机制下,循环100次后的放电比容量还能高达120 m A?h/g,容量保持率为87%。恒电流间歇滴定技术(GITT)的结果表明。x=0.2材料的D_(Li+)值比原始Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2材料的要高出一个数量级,说明尖晶石相的引入从根本上改善了材料的电化学性能。  相似文献   

11.
采用高温裂解沥青、纳米硅和超声酸化处理的碳纳米管混合物,制备了锂离子电池负极复合材料硅/碳/碳纳米管。测试表明复合材料首次放电比容量高达1077 mAh/g,经过20个循环后可逆容量仍高达703 mAh/g。碳纳米管在碳基体中形成的网状结构使复合材料在循环过程中保持较好的稳定形貌。  相似文献   

12.
电沉积制备的两种形貌Sn薄膜锂离子嵌入电极性能的比较   总被引:1,自引:0,他引:1  
用电沉积方法在Cu集流体上分别制备出用于锂离子电池负极材料的密集细粒状(<0.5 μm)和分散粗粒状(≈3 μm)两种Sn薄膜电极.用X射线衍射、扫描电镜、循环伏安及充、放电实验研究比较了两电极的组织与性能.结果表明,在氟硼酸盐溶液中使用以醛类为主的复合添加剂,在静止条件下可制得细粒Sn薄膜电极,在搅拌条件下可制得粗粒Sn薄膜电极;细粒Sn薄膜电极比粗粒Sn薄膜电极具有较优的初始嵌锂容量和循环稳定性:细粒Sn薄膜电极首次放电比容量达到787 mA·h/g,40次循环时放电比容量仍保持在630 mA·h/g;而粗粒Sn薄膜电极首次放电比容量只有576 mA·h/g,至20次循环放电比容量降至150 mA·h/g.  相似文献   

13.
以纳米二氧化锡和酚醛树脂为原料,借鉴模板法制备介孔炭的过程,根据碳热还原的原理制备纳米锡碳复合材料。运用X射线衍射,扫描电镜,循环伏安(CV)以及循环性能测试等手段对合成材料进行研究。结果表明,所得复合材料中锡颗粒粒径在100nm左右,其均匀分布于碳基体中所形成的较大孔隙中,该结构既能缓解充放电过程中锡颗粒的体积效应,又能增强电解液的浸润,利于锂离子的传导。锡含量为78.5%(质量分数,下同)的复合材料具有较好的综合性能:在200mA/g的电流密度下,首次放电容量达1070mAh/g,充放电效率为70%,30次循环后放电容量保持在560mAh/g,且倍率性能良好,当电流密度增大到1600mA/g时,材料依然保有440mAh/g的比容量。  相似文献   

14.
以十六烷基三甲基溴化铵为分散剂、尿素为沉淀剂,通过水热法制备了前驱体MnCO3,经热处理得到MnO2。利用X射线衍射和扫描电子显微镜对材料的结构和形貌进行表征,结合循环伏安和恒流充放电测试材料的电化学性能。结果表明:二氧化锰呈现出立方体的结构,样品在-0.4~0.6V(vs.SCE)的电位范围内具有良好的电容性能和循环稳定性,在0.5A/g的电流密度下单电极的放电比电容高达312.3F/g.  相似文献   

15.
为了得到高比电容的电极材料,采用热分解法制备了不同温度下Ti/Ir0.4Sn0.6O2电极材料。运用X射线衍射(XRD)、差热分析、扫描电镜(SEM)和循环伏安法(CV)分别测试了该材料的晶体结构、表面形貌和电化学特性。结果表明:涂层的晶化温度高于360℃。320℃退火的电极表面有很多白色小颗粒析出,其活性氧化物较多。比电容受热处理影响较大,在280℃时电容值很小,可逆性低,320℃退火的电极比电容为454 F/g。该电极随着充放电循环次数的增加,比电容增加,经过9000次循环后,比电容才开始下降,经历10000次循环充放电后的比电容为493 F/g,比未经循环时还大10%。  相似文献   

16.
采用溶剂热法制备锂离子电池负极材料Li_4Ti_5O_(12)/graphene(LTO/G)、Li_4Ti_5O_(12)/Ag-graphene(LTO/Ag-G)。通过X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和电池测试系统对合成的样品进行结构、形貌及电化学性能表征。结果表明:Ag纳米粒子(20~50 nm)均匀分布在石墨烯表面,在石墨烯和银微粒的协同作用下,LTO/Ag-G复合材料具有优良的电化学性能。该材料在0.2C和1C倍率下首次放电比容量为205.3 mA·h/g和179.3 mA·h/g;在1C倍率下,循环40次后放电比容量仍为149.6 mA·h/g。因此,LTO/Ag-G复合材料具有较好的倍率性能和循环性能,是一种理想的锂离子动力电池负极材料。  相似文献   

17.
固相法合成LiFePO4/C正极材料的电化学性能   总被引:1,自引:0,他引:1  
以廉价原材料FeSO4·7H2O为铁源,以蔗糖为碳源,采用固相法合成了锂离子电池正极材料--LiFePO4/C复合材料.用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试技术对不同铁源合成的LiFePO4/C复合材料的结构、形貌和电化学性能进行研究.结果表明:合成的样品具有均一的橄榄石型结构,以FeSO4·7H2O为铁源合成的LiFePO4/C复合材料的循环性能和高倍率放电性能均优于以FeC2O4·2H2O为铁源合成的LiFePO4/C复合材料的;由FeSO4·7H2O合成的LiFePO4/C复合材料的5C倍率放电比容量为105.9 mA-h/g,经循环30次后,容量仍高达105.2 mA-h/g.  相似文献   

18.
采用嵌段聚合物型表面活性剂P123作为结构导向剂,利用溶胶-凝胶方法制备出纳米TiO2作为合成Li4Ti5O12锂离子电池负极材料的原料之一.然后采用湿法球磨辅助的固相反应合成方法,以丙酮作为球磨介质,制备出Li4Ti5O12锂离子电池负极材科,并对所制备的Li4Ti5O12电极材料进行扫描电镜SEM、透射电镜TEM、粉末X射线衍射(XRD)、循环伏安(CV)以及循环性能测试.电化学性能测试表明所制各出的锂离子电池负极材料Li4Ti5O12具有较高的放电比容量和优异的循环性能.在电流密度为16 mA/g时首次放电比容量为155 mAh/g,首次库仑效率为98.3%.300次循环结束时放电比容量仍可达150.8 mAh/g,约为首次放电比容量的97.3%,300次循环容量仅衰减了2.7%.  相似文献   

19.
以聚丙烯酸为碳源,用低温还原-插锂与聚合物高温分解相结合的方法制备LiFePO4/C复合正极材料;FePO4被还原插锂与含碳聚合物化学包覆同时进行,简化了制备工艺,降低了制备成本。经X射线粉末衍射(XRD)、扫描电镜(SEM)以及恒电流充/放电测试,研究了不同焙烧温度对合成产物的物相、晶胞参数、表面形貌及电化学性能的影响。研究发现,焙烧温度为600℃时,合成产物的0.1 C倍率放电具有最高的放电容量和最好的循环稳定性。在0.1 C下LiFePO4/C复合材料的首次放电容量高达141.3 mAh/g,库伦效率为98.0%,100次循环后,其容量保持率为108.3%。  相似文献   

20.
通过调控溶液中的离子强度,制备Fe_3O_4与氧化石墨烯的复合材料,该方法环境友好且简单。进一步研究Fe_3O_4/GO复合材料作为锂离子电池负极材料的性能,结果与Fe_3O_4纳米颗粒相比有着显着的改善。在电流密度为500mA/g时,充放电循环100次后,Fe_3O_4/GO复合材料的放电比容量仍有930mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号