首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用简单化学沉淀法,以十六烷基三甲基溴化铵(CTAB)为模板,Co(NO3)2.6H2O和NaOH为原料,空气作为温和氧化剂,室温下合成了具有花状分级多孔结构的Co3O4纳米颗粒电极材料。X-射线衍射(XRD)表明,产物中主要成分为Co3O4;扫面电镜的结果显示,制备的材料具有菜花状分级多孔结构;电化学测试结果表明,最高比容量达250 F/g,且经过1 000次循环后,容量保持了84%,显示出良好的超级电容性能。  相似文献   

2.
以六水合硝酸钴(Co(NO3)2?6H2O)、苯甲酰丙酮(C10H10O2)为原料, 利用微波法合成了前体。前体在500℃空气条件下锻烧得到无定形Co3O4花球。通过 XRD、 SEM、TEM对目标产物进行了表征 , 研究了无定形Co3O4花球的微观结构、表面形貌。电化学测试结果表明,无定形Co3O4花球负极材料 在100mA/g的电流密度下,首次充电比容量达到826mAh/g;循环100圈后,容量保持率为89.2%,具有高的比容量、良好的循环性能和广泛的应用前景。  相似文献   

3.
采用纳米化策略进一步提高锂离子电池负极材料(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物(HEO)的倍率性能。本研究以金属硝酸盐为金属源、尿素为沉淀剂、十二烷基三甲基溴化铵(DTAB)为表面活性剂,利用水热法成功制备了具有单一尖晶石结构的(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 HEO纳米材料。研究表明:与未添加表面活性剂相比,水热过程中引入表面活性剂,所制备的(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物纳米晶粉体,具有更小的颗粒尺寸、更均匀的分散度、更大的比表面积和均一的孔结构。这种独特的结构特征使该电极材料具有较大的赝电容贡献率,从而使材料的可逆比容量和倍率性能得到大幅度提升。引入表面活性剂的电极材料在0.2 A/g的电流密度下展示了较高的初始放电比容量(1308 mA·h/g)和首圈库伦效率(82.5%),循环25圈时可逆容量为1263 mA·h/g;在3 A/g的高电流密度下,循环150圈后的比容量高达1053 mA·h/g,为未引入表面活性剂的电极材料比容量的8倍多。  相似文献   

4.
闫霆  王凯  潘卫国  蒯子函  赵永明  李国柱 《精细化工》2021,38(9):1808-1812,1818
以硬脂醇(SAL)作为相变材料、Co3O4/膨胀石墨(EG)作为支撑材料,通过熔融共混-压制成型制备了一种复合相变材料(PCMs)SAL/Co3O4/EG-P.EG的添加用于改善PCM的导热性能,同时采用ZIF-67煅烧后得到的Co3O4对其进行了化学改性.采用SEM对Co3O4/EG-P的结构进行表征.结果表明,Co3O4/EG具有三维耦合网络和分级多孔结构,EG可以有效防止金属有机骨架衍生材料结构的坍塌和团聚.采用SEM、DSC和红外成像仪对复合PCMs的形貌和热性能进行了分析.结果表明,随着Co3O4和EG的质量比从1:1到1:8,复合PCMs的导热系数呈现上升趋势.当m(Co3O4):m(EG)=1:8时,复合PCMs的熔化温度为51.26℃,潜热为191.63 J/g,热导率大约是纯SAL〔0.248 W/(m·K)〕的47.5倍.而红外成像结果则验证了复合PCMs的瞬态温度变化与其热导率密切相关.  相似文献   

5.
LiNixCoyMn1-x-yO2作为锂离子电池正极材料具有比容量高、循环寿命长、价格低、无污染等优点。综述了镍、钴、锰不同物质的量比对LiNixCoyMn1-x-yO2正极材料电化学性能的影响;以Li(Ni1/3Co1/3Mn1/3)O2为例重点介绍了锂含量对Li(Ni1/3Co1/3Mn1/3)O2性能的影响,目前所采用的合成方法(如高温固相法、共沉淀法、溶胶-凝胶法、喷雾干燥法)及其对电化学性质的影响;最后,对Li(Ni1/3Co1/3Mn1/3)O2的表面处理与掺杂的研究进展情况进行了介绍,并对Li(Ni1/3Co1/3Mn1/3)O2正极材料的发展进行了展望。  相似文献   

6.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

7.
为获得具有更高比容量的超级电容器正极材料,在单一金属有机框架材料的基础上研究多元金属有机框架及其衍生物的电容性能,以不同的金属元素(Ni、Co)比例制备多元金属有机框架材料,进而得到衍生的纳米级中空棒状金属磷酸盐。得到金属元素比例n(Ni):n(Co)=8:1时具有最大的比电容值895.29 F·g-1。  相似文献   

8.
采用溶胶-凝胶法合成制备了分子式为Li1.05Co0.05VxMn1.95-xO4(x=0.02、0.05、0.08)的固溶体样品。利用XRD、SEM对材料进行结构形态表征,并以合成的材料为正极材料进行循环伏安(CV)和恒电流充放电测试,结果显示:固溶体Li1.05Co0.05VxMn1.95-xO4具有较好的尖晶石结构,且颗粒分布均匀,晶面光滑。电化学测试结果显示:其具有较好的充放电性能和良好的循环性能,在室温0.5 C充放电倍率下,Li1.05Co0.05V0.05Mn1.9O4材料的初始放电比容量为110.7 mAh/g,且50次循环后,容量保持率为94.6%。  相似文献   

9.
采用同相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等).以LiOH·H2O,H2C2O4·2H2O,Ni(AC)2·4H2O,Co(AC)2·4H2O和Mn(AC)2·4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整.电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA·h/g,容量保持率为94%;50次循环后为157.2 mA·h/g,容量保持率为90.8%.  相似文献   

10.
采用沉淀法合成一系列Li(Ni1/3Co1/3Mn1/3)O2-xFx正极材料(0≤x≤0.5);用X射线衍射仪和扫描电镜仪分析了合成产物的晶体结构及表面形貌;利用充放电仪测定产物的电化学性能,结果表明Li(Ni1/3Co1/3Mn1/3)O1.7F0.3的电化学性能最佳,首次充放电比容量分别达181.9、174.0 mA.h/g,材料的结构在循环过程中保持稳定,倍率性能变好,电化学阻抗明显降低。  相似文献   

11.
祁永东 《应用化工》2014,(12):2210-2213,2216
石墨烯具有高的机械强度和大的比表面积。以石墨烯、硝酸镍和硝酸钴为原料,水合肼为还原剂,采用水热法制备了三维石墨烯基Co-Ni双氢氧化物(GCN),用XRD、SEM、循环伏安、恒电流充放电测试方法对石墨烯和不同比例的GCN的结构和电化学性能进行表征研究。结果表明,在电流密度为1 A/g时,比容量可达1 230 F/g,并且循环500周后,比容量仍能保持91.6%,有望成为超级电容器的电极材料。  相似文献   

12.
周晓平  舒东 《广州化工》2010,38(5):163-165,178
采用液相共沉淀法制备了一种含Mn、S、O的无定型粉末材料,元素分析结果表明其组成为MnS0.4O0.8。采用XRD、SEM对其进行了物理表征。通过循环伏安和恒流充放电研究了其电容行为。结果表明:在1mol.L-1Na2SO4溶液中该材料具有良好的电容性能。当扫描速度为2mV.s-1时,其比电容为131F.g-1,经历500循环后其比电容还能保持初始值的94.8%,表现了良好的稳定性。恒流充放电实验结果表明材料的可逆性良好。此材料可作为电化学超级电容器的一种新的候选材料。  相似文献   

13.
宋云龙  高云芳  徐新 《炭素》2013,(2):9-13
采用二次活化的方法,通过改变活化剂种类、活化剂浓度、活化温度等参数,用商用活性炭制备高比容量活性炭。循环伏安、恒流充放电测试的结果表明,活化剂为65%的H3PO4,活化温度为800℃时,改性活性炭(AC—M)的比电容达到了331F/g。对AC—M进行SEM表征,图像显示活性炭大中孔比例增加。电化学测试表明,In2O3与Bi2O3混合使用抑制析氢效果较好。将AC—M应用于铅炭电池,结果表明,采用AC—M的铅炭电池高倍率部分荷电循环寿命为普通铅蓄电池的3~4倍。  相似文献   

14.
分别以纳米氧化铝、氢氧化铝及异丙醇铝为原料,采用液相浸渍法对LiNi1/3Co1/3Mn1/3O2材料进行氧化铝包覆,考察不同包覆源在LiNi1/3Co1/3Mn1/3O2材料表面进行氧化铝包覆后对材料电化学性能的影响。SEM及XRD结果显示,产物为层状α-NaFeO2结构,氧化铝均匀包覆在LiNi1/3Co1/3Mn1/3O2材料表面。充放电性能测试结果表明,在3种铝源中,以异丙醇铝为包覆源的材料性能最佳:在3.0~4.6 V的电压下,0.1 C倍率下首次放电比容量为196.1 mA·h/g, 1 C下循环50周后容量保持率为95.6%。  相似文献   

15.
以废弃烟叶为碳源、碳酸钾为活化剂一步法制得烟草基多孔碳。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、N2吸附-脱附分析(BET)和拉曼光谱(Raman)等手段对多孔材料进行表征。结果表明,材料表面含有醚基、羧基等杂原子基团,具有丰富的孔道结构,比表面积高达2 058 m2/g。三电极体系中的电化学性能结果表明,当碳酸钾与废弃烟叶质量比为3∶1时具有最佳储电性能,其在1 A/g电流下比容量可达337 F/g;10 A/g时循环充放电2 000次,材料的容量保持率为97.3%,具有良好的倍率性能和循环稳定性。  相似文献   

16.
以聚丙烯腈(PAN)为前驱体,制备具有发达三维网络结构的大/中孔PAN纤维,采用水合肼和盐酸羟胺处理使PAN纤维在产生交联反应的同时进一步引入氮原子,制备了富氮多孔碳纤维,并考察了富氮多孔碳纤维的形貌结构、孔结构特征及电化学性能。结果表明:富氮多孔碳纤维中的N和O原子含量分别为13.53%和8.01%,在电流密度为0.1 A/g时,比电容为222 F/g,比表面电容达0.80 F/m2。  相似文献   

17.
钛酸钡(BaTiO3)材料具有铁电、压电、热电、介电等特性,广泛用于制造高介电容器、热敏电阻和换能器等,特别是用作多层陶瓷电容器(MLCC)的基质材料.目前,MLCC向高可靠性、高比容(小尺寸大容量)、低成本的趋势发展.因此,制备高纯超细的BaTiO3粉体以及掺杂改性的研究,是该领域研究的热点.本文制备了Nd(OH)3...  相似文献   

18.
Wang B  Zhu T  Wu HB  Xu R  Chen JS  Lou XW 《Nanoscale》2012,4(6):2145-2149
Porous Co(3)O(4) nanowires with large aspect ratio have been obtained by annealing long Co(CO(3))(0.5)(OH)·0.11H(2)O precursor nanowires synthesized by a facile hydrothermal method. The results show that the amount of the additive (urea) has an important impact on the morphology of the as-synthesized cobalt-carbonate-hydroxide intermediate, where the uniformity and the overall structure can be controlled by changing the urea concentration. After the heat treatment, the as-obtained phase-pure Co(3)O(4) nanowires with a well retained structure are applied as the electrode material for supercapacitors, and the sample exhibits excellent performance with a high specific capacitance of 240 F g(-1) after 2000 charge/discharge cycles, corresponding to a retention of 98% of the initial capacitance.  相似文献   

19.
对一商用活性炭依次使用H3PO4和NaHCO3联合活化制备适用于铅炭超级电池用活性炭材料,该材料在较浓硫酸体系下具有较高的比电容较和良好的稳定性.利用SEM、XRD和FTIR分别对活性炭表面形貌、微晶结构和表面官能团结构进行分析,通过循环伏安、恒流充放电等方法研究活性炭的电化学性能.结果表明,经过联合活化的活性炭在1.0A/g电流密度、4.8mol/L硫酸溶液条件下稳定放电电容高达224.9F/g,比电容保持率达到86.5%.将联合活化制得的活性炭添加到铅酸电池负极中,其在高倍率部分荷电状态下循环性能有明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号