首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to achieve efficient use of nitrogen (N) and minimize pollution potentials, producers of irrigated maize (Zea mays L.) must make the best use of N from all sources. This study was conducted to evaluate crop utilization of nitrate in irrigation water and the effect N fertilizer has on N use efficiencies of this nitrate under irrigated maize production. The study site is representative of a large portion of the Central Platte Valley of Nebraska where ground water nitrate-N (NO3-N) concentrations over 10 mg L–1 are common. Microplots were established to accommodate four fertilizer N rates (0, 50, 100, and 150 kg ha–1) receiving irrigation water containing three levels of NO3-N (0, 10, 20 mg L–1). Stable isotope15N was applied as a tracer in the irrigation water for treatments containing 10 and 20 mg L–1 NO3-N. Plots that did not receive nitrate in the irrigation water where tagged with15N fertilizer as a sidedress treatment. Sidedressed N fertilizer significantly reduced irrigation-N uptake efficiencies. When residual N uptake is added to first year plant usage, total irrigation NO3-N uptake efficiencies are similar to total sidedress N fertilizer uptake efficiencies for our cropping system over the two year period. Efficiency of irrigation-N use depends on crop needs and availability of N from other sources during the irrigation season.  相似文献   

2.
Nitrogen leaching and plant uptake from controlled-release fertilizers   总被引:5,自引:0,他引:5  
Controlled-release N fertilizers are commonly used in the production of container-grown ornamental crops, yet the relative effects of various nutrient sources on N leaching are not well known. A 27-week experiment was conducted to evaluate N leaching loss and plant growth following two applications of six controlled-release N fertilizers and one soluble N fertilizer to container-grownEuonymus patens Rehd. The controlled-release fertilizers evaluated were (noncoated) isobutylidene diurea, oxamide, urea formaldehyde, and (coated) Osmocote, Prokote Plus, and sulfur-coated urea. Of the fertilizers tested, the coated fertilizers generally out-performed the noncoated fertilizers in reducing N leaching losses, stimulating plant growth, and increasing tissue N concentrations. Low N concentrations in the leachate of some treatments indicated efficient nutrient use by the plant. In other treatments, low N concentrations in the leachate merely reflected incomplete N release from the fertilizer. A daily application of NH4NO3 resulted in a constant rate of N loss but was not the most effective in promoting growth. Plant growth, tissue N concentrations, and N leaching losses were all increased by doubling the fertilizer application rate from 1 kg N m–3 to 2 kg N m–3.  相似文献   

3.
Nitrate (NO3 ) leaching from agriculturalproduction systems is blamed for the rising concentrations ofNO3 in ground- and surface-waters around the world.This paper reviews the evidence of NO3 leachinglosses from various land use systems, including cut grassland, grazed pastures,arable cropping, mixed cropping with pasture leys, organic farming,horticultural systems, and forest ecosystems. Soil, climatic and managementfactors which affect NO3 leaching are discussed.Nitrate leaching occurs when there is an accumulation ofNO3 in the soil profile that coincides with or isfollowed by a period of high drainage. Therefore, excessive nitrogen (N)fertilizer or waste effluent application rates or N applications at the wrongtime (e.g. late autumn) of the year, ploughing pasture leys early in the autumn,or long periods of fallow ground, can all potentially lead to highNO3 leaching losses. N returns in animal urine havea major impact on NO3 leaching in grazed pastures.Of the land use systems considered in this paper, the potential for causingNO3 leaching typically follow the order: forest< cut grassland < grazed pastures, arable cropping < ploughing ofpasture < market gardens. A range ofmanagement options to mitigate NO3 leaching isdescribed, including reducing N application rates, synchronizing N supply toplant demand, use of cover crops, better timing of ploughing pasture leys,improved stock management, precision farming, and regulatory measures. This isfollowed by a discussion of future research needs to improve our ability topredict and mitigate NO3 leaching.  相似文献   

4.
Two greenhouse experiments were conducted with strawberries (Fragaria ananassa) grown in plastic pots filled with 12 kg of soil, and irrigated by drip to evaluate the effect of 3 N levels and 3 N sources. The N levels were 3.6, 7.2 or 10.8 mmol Nl–1 and the N sources were urea, ammonium nitrate and potassium nitrate for supplying NH4/NO3 in mmol Nl–1 ratios of 7/0, 3.5/3.5 or 0/7, respectively. Both experiments were uniformly supplied with micronutrients and 1.7 and 5.0 mmoll–1 of P and K, respectively. The fertilizers were supplied through the irrigation stream with every irrigation. The highest yield was obtained with the 7.2 mmol Nl–1 due to increase in both weight and number of fruits per plant. With this N concentration soil ECe and NO3-N concentration were kept at low levels. Total N and NO3-N in laminae and petioles increased with increasing N level. With the N sources the highest yield was obtained with urea due to better fruit setting. The N source had no effect on soil salinity and residual soil NO3-N; residual NH4-N in the soils receiving urea and ammonium nitrate were at low levels.  相似文献   

5.
Nitrogen fertigation of trickle-irrigated potato   总被引:5,自引:0,他引:5  
This three-year field study, on Pellic Vertisol, was designed to investigate the response of trickle-irrigated potato (Solanum tuberosum L.) to four nitrogen levels continually applied with the irrigation stream. Waters containing 70, 130, 190, and 250 mg Nl–1 and uniformly supplied with 50 and 120 mgl–1 of P and K, respectively, were applied when the soil water potential was between 0.03 and 0.04 MPa. The amount of water applied at each irrigation was equivalent to 0.8 of pan evaporation from a screened USWB Class A pan. The resulting N application totals ranged from 205 to 735 kg ha–1. Significant buildup of soil NO3-N occurred below 45 cm depth with the two higher amounts of N but not with the 70 or 130 mg Nl–1. A concentration of 130 mg Nl–1 was adequate for maintaining petiole NO3-N above the critical value throughout the growing period. The highest yield of good quality (58130 kg ha–1; specific gravity 1.071) was obtained with 130 mg Nl–1. It was concluded that fertigation (combined irrigation with fertilization) is a promising means for maintaining N concentration in the soil throughout the growing period at desirable levels, without undue losses by leaching.  相似文献   

6.
Management of nitrogen by fertigation of potato in Lebanon   总被引:2,自引:0,他引:2  
Reports on soil and groundwater contamination with nitrates in Lebanon and other developing countries could be related to the mismanagement of water and fertilizer inputs. The objective of this work was to determine the N requirements and N-use efficiency of a main-crop potato in Lebanon, irrigated by a drip system, compared to the farmer's practice of macro-sprinkler. In the drip irrigation, fertilizers input was as soil application at the time of sowing or added continuously with the irrigation water (fertigation). Nitrogen-fertilizer recovery was determined using 15N-labeled ammonium sulfate. Fertigation with continuous N feeding based on actual N demands and available sources allowed for 55% N recovery. For a total N uptake of 197 kg ha–1 per season in the lower N rate, the crop removed 66 kg N ha–1 from fertilizers. The spring potato crop in this treatment covered 44.8% of its N need from the soil and 21.8% from irrigation water. Higher N input increased not only N derived from fertilizers, but also residual soil N. Buildup of N in the soil with the traditional potato fertilization practice reached 200 kg N ha–1 per season. With increasing indications of deteriorating groundwater quality, we monitored the nitrate leaching in these two watering regimes using soil solution extractors (tensionics). Nitrate leaching increased significantly with the macro-sprinkler technique. But N remained within the root zone with the drip irrigation. The crop response to applied N requires a revision of the current fertilizer recommendation in semi-arid regions, with an improved management of fertilizer and water inputs using fertigation to enhance N recovery.  相似文献   

7.
Field experiments were conducted in Central Thailand under a rice–fallow–rice cropping sequence during consecutive dry and wet seasons of 1998 to determine the impact of residue management on fertilizer nitrogen (N) use. Treatments consisted of a combination of broadcast urea (70 kg N ha–1) with rice straw (C/N 67) and rice hull ash (C/N 76), which were incorporated into the puddled soil 1 week before transplanting at a rate of 5 Mg ha–1. Nitrogen-15 balance data showed that the dry season rice recovered 10 to 20% of fertilizer N at maturity. Of the applied N, 27 to 36% remained in the soil. Loss of N (unaccounted for) from the soil–plant system ranged from 47 to 54% of applied N. The availability of the residue fertilizer N to a subsequent rice crop was only less than 3% of the initial applied N. During both season fallows NO3-N remained the dominant form of mineral-N (NO3+NH4) in the aerobic soil. In the dry season grain yield response to N application was significant (P=0.05). Organic material sources did not significantly change grain yield and N accumulation in rice. In terms of grain yields and N uptake at maturity, there was no significant residual effect of fertilizer N on the subsequent rice crop. The combined use of organic residues with urea did not improve N use efficiency, reduced N losses nor produced higher yields compared to urea alone. These results suggested that mechanisms such as N loss through gaseous N emissions may account for the low fertilizer N use efficiency from this rice cropping system. Splitting fertilizer N application should be considered on the fertilizer N use from the organic residue amendment.  相似文献   

8.
Environmental problems associated with raw manure application might bemitigated by chemically or biologically immobilizing and stabilizing solublephosphorus (P) forms. Composting poultry litter has been suggested as a means tostabilize soluble P biologically. The objectives of this study were to assessthe nutrient (N, P) value of different-age poultry litter (PL) compostsrelativeto raw poultry litter and commercial fertilizer and determine effects ofpoultrylitter and composts on corn (Zea mays) grain yield andnutrient uptake. The research was conducted for two years on Maryland'sEastern Shore. Six soil fertility treatments were applied annually to aMatapeake silt loam soil (Typic Hapludult): (1) a check without fertilizer, (2)NH4NO3 fertilizer control (168 kg Nha–1), (3) raw poultry litter (8.9 Mgha–1), (4) 15-month old poultry litter compost (68.7Mg ha–1), (5) 4-month old poultry litter compost(59 Mg ha–1) and (6) 1-month old poultry littercompost (64 Mg ha–1). We monitored changes inavailable soil NO3-N and P over the growing season and post harvest.We measured total aboveground biomass at tasseling and harvest and corn yield.We determined corn N and P uptake at tasseling.Patterns of available soil NO3-N were similar between raw PL-and NH4NO3 fertilizer-amended soils. LittleNO3-N was released from any of the PL composts in the first year ofstudy. The mature 15-month old compost mineralized significant NO3-Nonly after the second year of application. In contrast, available soil P washighest in plots amended with 15-month old compost, followed by raw PL-amendedplots. Immature composts immobilized soil P in the first year of study. Cornbiomass and yields were 30% higher in fertilizer and raw PL amendedplotscompared to yields in compost-amended treatments. Yields in compost-amendedplots were greater than those in the no-amendment control plots. Corn N and Puptake mirrored patterns of available soil NO3-N and P. Corn Puptakewas highest in plots amended with 15-month old compost and raw PL, even thoughother composts contained 1.5–2 times more total P than raw PL. There wasalinear relationship between amount of P added and available soil P, regardlessof source. The similar P availabilities from either raw or composted PL,coupledwith limited crop P uptake at high soil P concentrations, suggest that raw andcomposted PL should be applied to soils based on crop P requirements to avoidbuild-up of available soil P.  相似文献   

9.
Methane (CH4) emissions were measured with an automated system in Central Luzon, the major rice producing area of the Philippines. Emission records covered nine consecutive seasons from 1994 to 1998 and showed a distinct seasonal pattern: an early flush of CH4 before transplanting, an increasing trend in emission rates reaching maximum toward grain ripening, and a second flush after water is withdrawn prior to harvesting. The local practice of crop management, which consists of continuous flooding and urea application, resulted in 79–184 mg CH4 m–2 d–1 in the dry season (DS) and 269–503 mg CH4 m–2 d–1 in the wet season (WS). The higher emission in the WS may be attributed to more labile carbon accumulation during the dry fallow period before the WS cropping as shown by higher % organic C. Incorporation of sulfate into the soil reduced CH4 emission rates. The use of ammonium sulfate as N fertilizer in place of urea resulted in a 25–36% reduction in CH4 emissions. Phosphogypsum reduced CH4 emissions by 72% when applied in combination with urea fertilizer. Midseason drainage reduced CH4 emission by 43%, which can be explained by the influx of oxygen into the soil. The practice of direct seeding instead of transplanting resulted in a 16–54% reduction in CH4 emission, but the mechanisms for the reducing effect are not clear. Addition of rice straw compost increased CH4 emission by only 23–30% as compared with the 162–250% increase in emissions with the use of fresh rice straw. Chicken manure combined with urea did not increase CH4 emission. Fresh rice straw has wider C/N (25 to 45) while rice straw compost has C/N = 6 to 10 and chicken manure has C/N = 5 to 8. Modifications in inorganic and organic fertilizer management and water regime did not adversely affect grain yield and are therefore potential mitigation options. Direct seeding has a lower yield potential than transplanting but is getting increasingly popular among farmers due to labor savings. Combined with a package of technologies, CH4 emission can best be reduced by (1) the practice of midseason drainage instead of continuous flooding, (2) the use of sulfate-containing fertilizers such as ammonium sulfate and phosphogypsum combined with urea; (3) direct seeding crop establishment; and (4) use of low C/N organic fertilizer such as chicken manure and rice straw compost.  相似文献   

10.
Confined microplots were used to study the fate of15N-labelled ammonium nitrate and urea when applied to ryegrass in spring at 3 lowland sites (S1, S2 and S3). Urea and differentially and doubly labelled ammonium nitrate were applied at 50 and 100 kg N ha–1. The % utilization of the15N-labelled fertilizer was measured in 3 cuts of herbage and in soil to a depth of 15 cm (soil0–15).Over all rates, forms and sites, the % utilization values for cuts 1, 2, 3 and soil0–15 were 52.4, 5.3, 2.4 and 16.0% respectively. The % utilization of15N in herbage varied little as the rate of application increased but the % utilization in the soil0–15 decreased as the rate of application increased. The total % utilization values in herbage plus soil0–15 indicated that losses of N increased from 12 to 25 kg N ha–1 as the rate of N application was increased from 50 to 100 kg N ha–1.The total % utilization values in herbage plus soil0–15 over both rates of fertilizer N application were 84.1, 80.8 and 81.0% for urea compared with 74.9, 72.5 and 74.4% for all ammonium nitrate forms at S1, S2 and S3 respectively. Within ammonium nitrate forms, the total % utilization values in herbage plus soil0–15 over both rates and all sites were 76.7, 69.4 and 75.7% for15NH4NO3, NH4 15NO3 and15NH4 15NO3 respectively. The utilization of the nitrate moiety of ammonium nitrate was lower than the utilization of the ammonium moiety.The distribution of labelled fertilizer between herbage and soil0–15 varied with soil type. As the total utilization of labelled fertilizer was similar at all sites the cumulative losses due to denitrification and downward movement appeared to account for approximately equal amounts of N at each site.  相似文献   

11.
Field experiments were conducted from 1988 to 1991 or 1992 at two sites (Lacombe-Black Chernozem and Eckville-Gray Luvisol) in central Alberta, Canada to determine the effect of rate (0 to 300 kg N ha–1), source [urea and ammonium nitrate (AN)] and time (early fall, late fall, early winter, early spring and late spring) of N application on dry matter yield (DMY), protein yield (PY), protein concentration (PC), N-use efficiency (NUE), % N recovery (% NR) and nitrate-N (NO3–N) concentration in meadow bromegrass (Bromus bibersteinii Roem and Shult. cv. Regar). The DMY, PY and PC increased with increasing applied N, but the NUE and % NR decreased at high N rates. The increases in PY from fertilizer N were proportionately greater than DMY due to increase in PC at high N rates. Potentially toxic NO3–N levels (>2.3 g kg–1) were not found in the forage. Urea generally produced lower DMY, PY, PC, NUE and % NR than AN, regardless of time of application and cut. Early spring application had the highest and early winter application had the lowest DMY and PY. In conclusion, urea was less effective than AN as a forage fertilizer and early spring application was most effective.  相似文献   

12.
Ammonia volatilization from fertilizers applied to irrigated wheat soils   总被引:1,自引:0,他引:1  
A series of experiments using flow chambers was undertaken in the field to investigate the effects of stubble and fertilizer management, soil moisture and precipitation on ammonia volatilization following nitrogen application on chromic luvisols. In the first factorial experiment, urea at 100 kg N ha–1 was applied to the soil surface one, three and six days following irrigation; there were four rice stubble management systems comprising stubble burnt, stubble burnt then rotary hoed, stubble rotary hoed into the soil and stubble retained on the surface. Cultivation almost halved ammonia loss. The higher loss from uncultivated plots was ascribed to an alkaline ash bed on burnt plots, and to higher soil moisture and some retention of urea prills in the crop residue above the soil surface of the stubble retention plots. Average volatilization over a 12 day period following urea application from plots fertilizer one, three or six days after irrigation was 16, 15 and 4 kg N ha–1, respectively. Daily application of up to 1.7 mm of water did not reduce volatilization and 35 kg N ha–1 was lost within five days of fertilization. Daily precipitation of 6.8 mm reduced loss to 14 kg N ha–1. This quantity of rain is uncommon in the region and it was concluded that showery conditions are unlikely to reduce volatilization. The third experiment demonstrated that the quantity of stubble on the soil surface had no effect on volatilization, and all plots lost 25% of applied nitrogen. In the fourth experiment, 100 kg N ha–1 as urea or ammonium nitrate was either broadcast onto the surface or stubble retention plots, or placed, and partly covered to simulate topdressing with a disc implement. Partial burial of urea reduced ammonia volatilization from 36 to 7 kg N ha–1, while partial burial of ammonium nitrate reduced loss from 4 to 0 kg N ha–1.  相似文献   

13.
Nitrate (NO−1 3) leaching from agricultural soils can represent a substantial loss of fertilizer nitrogen (N), but a large variation in losses has been reported. We report N leaching losses under four N fertilizer treatments and two farmer's fields in the Yaqui Valley, Mexico. In these irrigated wheat systems, farmers typically apply 250 kg N ha−1 as anhydrous ammonia (knifed in) or urea(broadcast), with 75% applied directly before planting and 25% at the time of the first post-planting irrigation. Over two wheat seasons, we compared typical farmer's practices to alternatives that applied less N and more closely timed fertilizer application to plant demand. Field lysimeter measurements and predictions from a water transport simulation model (called NLOSS) were used to estimate the amount of N leached over the season. Approximately 5 and 2% of the applied N leached below the root zone with the typical farmer's practice in 1995–96 and 1997–98,respectively. The alternative treatments reduced N leaching losses by 60 to95% while producing comparable economic returns to the farmer. Leaching losses from the two farmer's fields were substantially higher (about 14and26% of the applied N). Our results indicate that the typical farmer's practice leads to relatively high N leaching losses, and that alternative practices synchronizing fertilizer application with crop demand can substantially reduce these losses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The efficient use of water and nitrogen represents a primary concern to agricultural production in Northwest China. A 2-year field experiment was conducted to assess the separation of nitrogen (N) fertilizer and irrigation water with alternating furrow irrigation (SNWAFI) in a maize (Zea mays L.) production system. Irrigation water use efficiency and nitrogen use efficiency with SNWAFI were generally greater than with conventional irrigation and fertilization (CIF). Response surfaces indicated that maximum maize yields were obtained with 238 kg urea-N ha?1 and 106 mm irrigation water in 2008 and 244 kg urea-N ha?1 and 95 mm of irrigation water in 2009. When the predicted yields were highest (6,384 and 6,549 kg ha?1), water use efficiency, N uptake, and N use efficiency were greater with SNWAFI than CIF. Conversely, soil NO3–N change during maize growing season decreased with SNWAFI compared CIF. With SNWAFI, optimizing irrigation water and N fertilizer rates can maximize yield, save irrigation water, and reduce N leaching.  相似文献   

15.
Mathematical models may be applied to simulate nitrogen (N) dynamics under different types of soil and environmental conditions to assess fertilizer N needs or to predict nitrate-N (NO3–N) potential impact on water quality. The research version of LEACHMN was evaluated using data from lysimeters and field experiments conducted at the University of Lomé Research Farm in Togo, West Africa. The model was calibrated for the mineralization, nitrification, denitrification and volatilization rate constants with measured values of NO3–N leaching losses and maize (Zea mays L.) N uptake collected from the lysimeter experiment. The model was then tested against measured data of soil profile NO3–N distribution and maize N uptake from the field experiment and drainage water collected from the lysimeter experiment. The testing procedure involved two scenarios with increasing level of generalization for transformation rate constants (i) rate constant values for each N treatment and (ii) rate constant values averaged over N treatments. LEACHMN effectively simulated drainage water volume and rate (r2= 0.94 to 0.99). During the calibration efforts, the model satisfactorily simulated NO3–N leaching losses (r2= 0.98) and accurately simulated growing season cumulative maize N uptake. The variation of the calibrated rate constants among N treatments was primarily linked to the model's incapacity to accurately simulate maize N uptake throughout the growing period. When tested using calibrated rate constants for each treatment, the model was successful in simulating soil profile NO3–N distribution (r2 = 0.52 to 0.94). Simulations of soil profile NO3–N distribution were not satisfactory (r2= 0.03 to 0.49) when rate constants were averaged over N treatments. Improvement of the plant N uptake routine of the model is needed to increase the model’s performance. Using the LEACHMN model to predict N dynamics on the Ferralsols of southern Togo appears feasible when appropriate calibrations are performed.  相似文献   

16.
Yield response of dryland wheat to fertilizer N application in relation to components of seasonal water (available soil moisture and rainfall) and residual farm yard manure (FYM) was studied for five years (1983–84 to 1987–88) on a maize-wheat sequence on sandy loam soils in Hoshiarpur district of Punjab, India. Four rates of N viz. 0, 40, 60 and 80 kg ha–1 in wheat were superimposed on two residual FYM treatments viz. no FYM (F0) and 15 t ha–1 (F15) to preceding maize. FYM application to maize increased the residual NO3-N content by 19–30 kg ha–1 in the 180 cm soil profile. For a given moisture distribution, F15 increased attainable yields. Over the years, F15 increased wheat yield by 230 to 520 kg ha–1. Response to fertilizer N was lower in FYM amended plots than in unamended plots. Available soil moisture at wheat seeding and amount and distribution of rainfall during the vegetative and the reproductive phases of crop development affected N use efficiency by wheat. Available soil moisture at seeding alone accounted for 50% variation in yield. The residual effect of FYM on wheat yield could be accounted for by considering NO3-N in 180 cm soil profile at seeding. The NO3-N and available soil moisture at wheat seeding along with split rainfall for two main phases of crop development and fertilizer N accounted for 96% variation in wheat yield across years and FYM treatments.  相似文献   

17.
The effect of sole and intercropping of field pea (Pisumsativum L.) and spring barley (Hordeum vulgareL.) and of crop residue management on crop yield,NO3 leaching and N balance in the cropping systemwas tested in a 2-year lysimeter experiment on a temperate sandy loam soil. Thecrop rotation was pea and barley sole and intercrops followed by winter-rye anda fallow period. The Land Equivalent Ratio (LER), which is defined as therelative land area under sole crops that is required to produce the yieldsachieved in intercropping, was used to compare intercropping performancerelative to sole cropping. Crops received no fertilizer in the experimentalperiod. Natural 15N abundance techniques were used to determine peaN2 fixation. The pea–barley intercrop yielded 4.0 Mg grainha–1, which was about 0.5 Mg lowerthan theyields of sole cropped pea but about 1.5 Mg greater than harvestedin sole cropped barley. Calculation of the LER showed thatplant growth resources were used from 17 to 31% more efficiently by theintercrop than by the sole crops. Pea increased the N derived fromN2fixation from 70% when sole cropped to 99% of the total aboveground Naccumulation when intercropped. However, based upon aboveground N accumulationthe pea–barley intercrop yielded about 85 kg Nha–1, which was about 65 kg lower thansolecropped pea but about three times greater than harvested in sole croppedbarley.Despite different preceding crops and removal or incorporation of straw, therewas no significant difference between the subsequent non-fertilized winter-ryegrain yields averaging 2.8 Mg ha–1, indicating anequalization of the quality of incorporated residue by theNO3 leaching pattern.NO3 leaching throughout the experimental periodwas61 to 76 kg N ha–1. Leaching dynamics indicateddifferences in the temporal N mineralization comparing lysimeters previouslycropped with pea or with barley. The major part of this N was leached duringautumn and winter. Leaching tended to be smaller in the lysimeters originallycropped with the pea–barley intercrops, although not significantly differentfromthe sole cropped pea and barley lysimeters. Soil N balances indicated depletionof N in the soil–plant system during the experimental period, independent ofcropping system and residue management. N complementarity in the croppingsystemand the synchrony between residual N availability and crop N uptake isdiscussed.  相似文献   

18.
A field experiment was conducted on dryland wheat (Triticum aestivum L.cv PBW 175) for four years on a sandy loam soil to evaluate the effect of supplemental irrigation in combination with rate and method of fertilizer N application. The experiment was a split-split plot design consisting of three irrigation treatments (rainfed, one preseeding irrigation and one preseeding + one postseeding irrigation) in the main plot: four fertilizer N rates (0, 40, 80 and 120 kg ha–1) in the sub-plot and two methods of N application (drilled at the time of seeding and broadcast before preseeding irrigation) in the sub-sub plots. The crop response to supplementary irrigation(s) depended on the growing season water deficits. Broadcasting fertilizer N before preseeding irrigation resulted in the transporting of 39 per cent of the applied N to the sub-soil (20-60 cm depth). This resulted in better crop performance, particularly under low water supplies. A step wise regression was developed that showed water supplies beyond 26 cm of available water plus irrigation/rainfall from seeding to 45 days after were not productive and its distribution between pre- and post-fertilizer application periods affected water and applied N efficiencies. For higher crop yields under low water supply the fertilizer N broadcast before preseeding irrigation is suggested.  相似文献   

19.
Soil fumigation, commonly used in vegetable production, may alter the rate of nitrification, affecting availability of N for crop use. The objective of this research was to examine effects of soil fumigation and N fertilizer source on tomato growth and soil NO3–N and NH4–N in field production. Experiments 1 and 2 included application of methyl bromide at 420 kg ha-1 to a Norfolk sandy loam (fine loamy siliceous thermic Typic Kandiudult) in combination with preplant applications of calcium nitrate, ammonium nitrate, and ammonium sulfate at 144 kg N ha-1. An additional fumigant, metam-sodium, was included in the second experiment at 703 L ha-1 (268 kg sodium methyldithiocarbamate ha-1). Experiment 3 included methyl bromide and metam-sodium, with ammonium sulfate as the sole source of N applied at 144 kg N ha-1. In the first two studies, fumigants had little or no effect on soil NH4–N or NO3–N concentration. Tomato plants were larger and fruit yield was greater in fumigated plots, but there were few growth or yield responses to N source. In the third experiment, fumigants increased concentration of soil NO3–N and NH4–N at 16 days after fumigation (DAF), however, there was no effect on nitrification owing to fumigants. It appears that N source selection to overcome inhibition of nitrification is not necessary in plant production systems that involve fumigation  相似文献   

20.
Distribution and accumulation of NO3—N, down to 210 cm depth, in the soil profile of a long term fertilizer experiment were studied after 16 cycles of cropping (maize-wheat-fodder cowpea). The application of fertilizer N without P and K or in combination with only P resulted in higher NO3—N concentration in the soil profile than the application of N with P and K. With an annual application of 320 kg N ha–1 alone, a peak in NO3—N accumulation occurred at 135 cm soil depth. However, with the application of NPK, no peak in NO3—N distribution was discernible and its content at most of the sampling depths was either less than or equal to N and NP treatments. The annual application of 10 tons farm yard manure (FYM) per ha along with NPK resulted in a relatively lower NO3—N content in the sub soil. The amount of NO3—N accumulation in the soil profile decreased as the cumulative N uptake by the crops increased. Application of fertilizer amounts greater than that of the recommended (100% NPK) resulted in low percent N recoveries in crops and greater NO3—N accumulation in the soil profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号