首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogenated silicon nitride films (SiNx:H) deposited by plasma enhanced chemical vapor deposition (PECVD) technique is commonly used as an antireflection coating as well as surface passivating layer of crystalline silicon solar cells. The refractive indices of SiNx:H films could be changed by varying the growth gas ratio R(=NH3/SiH4+NH3) and annealing temperature. For optimum SiNx:H film, the optical and chemical characterization tools by varying the film deposition and annealing condition were employed in this study. Metal-insulator-semiconductor (MIS) devices were fabricated using SiNx:H as an insulator layer and they were subjected to capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization. The effect of rapid thermal annealing (RTA) on the surface passivation as well as antireflection properties of the SiNx:H films deposited at various process conditions were also investigated for the fabrication of low cost and high efficiency silicon solar cells.  相似文献   

2.
The carrier lifetime of crystalline silicon wafers that were passivated with hydrogenated silicon nitride (SiNx:H) films using plasma enhanced chemical vapor deposition was investigated in order to study the effects of hydrogen plasma pre-treatment on passivation. The decrease in the native oxide, the dangling bonds and the contamination on the silicon wafer led to an increase in the minority carrier lifetime. The silicon wafer was treated using a wet process, and the SiNx:H film was deposited on the back surface. Hydrogen plasma was applied to the front surface of the wafer, and the SiNx:H film was deposited on the hydrogen plasma treated surface using an in-situ process. The SiNx:H film deposition was carried out at a low temperature (<350 °C) in a direct plasma reactor operated at 13.6 MHz. The surface recombination velocity measurement after the hydrogen plasma pre-treatment and the comparison with the ammonia plasma pre-treatment were made using Fourier transform infrared spectroscopy and secondary ion mass spectrometry measurements. The passivation qualities were measured using quasi-steady-state photoconductance. The hydrogen atom concentration increased at the SiNx:H/Si interface, and the minority carrier lifetime increased from 36.6 to 75.2 μs. The carbon concentration decreased at the SiNx:H/Si interfacial region after the hydrogen plasma pre-treatment.  相似文献   

3.
L. Zhao  Y.H. Zuo  H.L. Li  W.J. Wang 《Solar Energy》2011,85(3):530-537
The absorption enhancement of the crystalline silicon (c-Si) solar cells by pyramid texture coated with SiNx:H layer was investigated by theoretical simulation via rigorous coupled-wave analysis (RCWA). It was found that in order to maximize the spectrally weighted absorptance of the solar cells for the Air Mass 1.5 (AM1.5) solar spectrum (AAM1.5), the required pyramid size (d) was dependent on the thickness of the c-Si substrate. The thinner the c-Si substrate is, the larger the pyramids should be. Pyramids with d > 0.5 μm can make AAM1.5 maximal if the c-Si substrate thickness is larger than 50 μm. But d > 1.0 μm is needed when the c-Si substrate thickness is less than 25 μm. If the c-Si substrate is thinner than 5 μm, even d > 4.0 μm is required. The underlying mechanism was analyzed according to the diffraction theory. The pyramid texture acts as not only an antireflective (AR) component, but also a light trapping element. Then, the optimized refractive index and the thickness of SiNx:H layer to further enhance the absorption were given out. The potential solar cell efficiency was also estimated.  相似文献   

4.
This work intends to investigate the effectiveness of silicon nitride layers (SiNx : H) deposited by photochemical vapor deposition (UVCVD) for antireflection and passivation purposes when applied to electromagnetically casted silicon solar cells (EMC). Effective reflectivity of 10.8% is achieved, as well as 66% increase of minority carrier lifetime.  相似文献   

5.
p-Type hydrogenated amorphous silicon (a-Si:H) was deposited on n-type crystalline silicon (c-Si) substrates to obtain hetero-junction diodes. Additionally, a thin intrinsic a-Si:H layer was inserted between both the p-type film and the n-type substrate to study its passivation effect on the c-Si surface. The amorphous films were obtained by the hot wire chemical vapor deposition (HWCVD) technique, using a tungsten filament and silane (SiH4), hydrogen (H2) and diborane (B2H6) gases, where the deposition parameters such as gas flow, substrate temperature and filament temperature were varied. Optical band gap, deposition rate and conductivity were measured for all the films. We studied the influence of the quality of the amorphous films upon the performance of the hetero-junction diodes. In particular, the diode ideality factor (n) and the saturation current density (J0) were determined by measuring the current-voltage characteristics in dark conditions. It is shown that the presence of the intrinsic layer is fundamental for making good diodes, since devices made without this film cause the diodes to have high saturation current density and ideality factor (J0>10×10−6 A/cm2, n>4) as compared to diodes with a good intrinsic layer (J0=5×10−9 A/cm2, n=1.39). The results obtained are encouraging, but the quality of the intrinsic films still should be improved for applying them to HIT solar cells.  相似文献   

6.
Passivation plays a critical role in silicon photovoltaics, yet how a passivation layer affects the optical characteristics of nano-patterned surfaces has rarely been discussed. In this paper, we demonstrate conical-frustum nanostructures fabricated on silicon solar cells using polystyrene colloidal lithography with various silicon-nitride (SiNx) passivation thicknesses. The omnidirectional and broadband antireflective characteristics were determined by utilizing angle-resolved reflectance spectroscopy. The conical-frustum arrays with a height of 550 nm and a SiNx thickness of 80 nm effectively suppressed the Fresnel reflection in the wavelength range from 400 to 1000 nm, up to an incidence angle of 60°. As a result, the power conversion efficiency achieved was 13.39%, which showed a 9.13% enhancement compared to that of a conventional KOH-textured silicon cell. The external quantum efficiency measurements confirmed that the photocurrent was mostly contributed by the increased optical absorption in the near-infrared. The angular cell efficiencies were estimated and showed improvements over large angles of incidence.  相似文献   

7.
Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon (μc-Si) deposition using SiH4/H2 mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on μc-Si and μc-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the μc-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. FxZnPc pigments with x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1 1 1) for electronic state line up determination by photoelectron spectroscopy. For x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon.  相似文献   

8.
Low surface recombination velocity and significant improvements in bulk quality are key issues for efficiency improvements of solar cells based on a large variety of multicrystalline silicon materials. It has been proven that PECVD silicon nitride layers provide excellent surface and bulk passivation and their deposition processes can be executed with a high throughput as required by the PV industry. The paper discusses the various deposition techniques of PECVD silicon nitride layers and also gives results on material and device properties characterisation. Furthermore the paper focuses on the benefits achieved from the passivation properties of PECVD SiNx layers on the multi-Si solar cells performance. This paper takes a closer look at the interaction between bulk passivation of multi-Si by PECVD SiNx and the alloying process when forming an Al-BSF layer. Experiments on state-of-the-art multicrystalline silicon solar cells have shown an enhanced passivation effect if the creation of the alloy and the sintering of a silicon nitride layer (to free hydrogen from its bonds) happen simultaneously. The enhanced passivation is very beneficial for multicrystalline silicon, especially if the defect density is high, but it poses processing problems when considering thin (<200 μm) cells.  相似文献   

9.
This work is a contribution towards the understanding of the properties of hydrogenated silicon nitride (SiNx:H) that lead to efficient surface and bulk passivation of the silicon substrate. Considering the deposition system used (low-frequency plasma-enhanced chemical vapour deposition (PECVD)), we report very low values of surface recombination velocity Seff. As-deposited Si-rich SiNx:H leads to the best results (n-type Si: Seff=4 cm/s - p-type Si: Seff=14 cm/s). After annealing, the surface passivation quality is drastically deteriorated for Si-rich SiNx:H whereas it is lightly improved for low refractive index SiNx:H (n∼2-2.1). The chemical analysis of the layers highlighted a high hydrogen concentration, regardless the SiNx:H stoichiometry. However, the involved H-bond types as well as the hydrogen desorption kinetics are strongly dependent on the SiNx:H composition. Furthermore, “N-rich” SiNx:H appears to be denser and thermally more stable than Si-rich SiNx:H. When subjected to a high-temperature treatment, such a layer is believed to induce the release of hydrogen in its atomic form, which consequently leads to an efficient passivation of surface and bulk defects of the Si substrate. The results are discussed and compared with the literature data reported for the different configurations of PECVD reactors.  相似文献   

10.
The paper reviews the material requirements of microcrystalline silicon (μc-Si) in terms of the device operation and configuration for thin film solar cells and thin film transistors (TFTs). We investigated the material properties of μc-Si films deposited by using 13.56 MHz plasma-enhanced chemical vapor deposition (PECVD) from a conventional H2 dilution in SiH4. Two types of intrinsic μc-Si films deposited at the high pressure narrow electrode gap and the low pressure wide electrode gap were studied for the solar cell absorption layers. The material properties were characterized using dark conductivity, Raman spectroscopy, and transmission electron microscope (TEM) measurements. The μc-Si quality and solar cell performance were mainly determined by microstructure characteristics. Solar cells adopting the optimized μc-Si film demonstrated high stability with no significant changes in solar cell performance after air exposure for six months and subsequent illumination for over 300 h. The results can be explained that low ion bombardment and high atomic hydrogen density under the PECVD condition of the high pressure narrow electrode gap produce high-quality μc-Si films for solar cell application.  相似文献   

11.
CdS has been proved to be an ideal material for use as the window layer for heterojunction solar cells especially with n-CdS/p-CdTe. CdS, Cd0.9Sn0.1S and Cd0.8Sn0.2S films were deposited onto glass substrates at 300 °C substrate temperature by using ultrasonic spray pyrolysis technique (USP). The effect of Sn concentration on some structural, optical and electrical properties of the films was presented. The crystal structure and orientation of the films were investigated by X-ray diffraction (XRD) patterns. XRD patterns showed that films have polycrystalline nature with a hexagonal structure. The grain size of the films decreased with increasing x values. The optical band gap values were obtained from optical absorption spectra of the films. The optical band gap values of the films were found to be between 2.44 and 2.45 eV. The variations of conductivity of Cd1−xSnxS (0 ≤ x ≤ 0.2) films have been investigated depending on applied voltage in dark and under illumination. The resistivity significantly decreased with increasing tin concentration and under illumination.  相似文献   

12.
A series of Cd1−xZnxS thin films were deposited onto indium-doped tin oxide (ITO) coated glass substrates by ultrasonic spray pyrolysis CdCl2, ZnCl2, and CS(NH2)2 aqueous solutions. The XRD patterns revealed that these films processed a wurtzite structure and a series of solid solutions of CdS and ZnS formed. The lattice constants decreased as the x value increased. From the transmittance and reflectance, the optical band gap was estimated to be between 2.45 eV and 3.72 eV, and the band gap increased as the x value increased according to a near linear relationship with the x value. The Mott-Schottky tests revealed that the flat potential shifted negatively as the x value increased. The photo responses agreed with the optical absorption of these films quite well. The current–potential measurements under chopped Xe lamp light irradiation show that the CdS deposited at 300 °C had best photoresponse. Its photoelectrochemical efficiency was estimated to be about 0.95% under 0.73 V bias from two electrodes current–potential tests.  相似文献   

13.
Optimization of plasma enhanced chemical vapor deposited hydrogenated silicon nitride (SiNx:H) towards bulk passivation of multi-crystalline silicon cells has been carried out for both low and high frequency (HF) plasma deposition. Experimental results showed that bulk passivation is not caused by hydrogen incorporation in the top silicon layer during deposition and subsequent diffusion towards the bulk during firing, but that it is released from the SiNx:H film. We demonstrate that the amount of passivation depends on the SiNx:H density and its resistance against etching in HF. Optimization of the density, varying deposition temperature and using hydrogen dilution resulted in an optimized passivation.  相似文献   

14.
We fabricated hydrogenated microcrystalline silicon (μc-Si:H) solar cells on SnO2 coated glass using a seed layer insertion technique. Since rich hydrogen atoms from the μc-Si:H deposition process degrade the SnO2 layer, we applied p-type hydrogenated amorphous silicon (p-a-Si:H) as a window layer. To grow the μc-Si:H layer on the p-a-Si:H window layer, we developed a seed layer insertion method. We inserted the seed layer between the p-a-Si:H layer and intrinsic bulk μc-Si:H. This seed layer consists of a thin hydrogen diluted silicon buffer layer and a naturally hydrogen profiled layer. We compared the characteristics of solar cells with and without the seed layer. When the seed layer was not applied, the fabricated cell showed the characteristics of a-Si:H solar cell whose spectral response was in a range of 400-800 nm. Using the seed layer, we achieved a μc-Si:H solar cell with performance of Voc=0.535 V, Jsc=16.0 mA/cm2, FF=0.667, and conversion efficiency=5.7% without any back reflector. The spectral response was in the range of 400-1100 nm. Also, the fabricated device has little substrate dependence, because a-Si:H has weaker substrate selectivity than μc-Si:H.  相似文献   

15.
In order to manufacture high-efficiency Si solar cells with a passivated rear surface and local contacts, it is necessary to develop both an excellent rear-passivation scheme compatible with screen-printing technology and a robust patterning technique for local contact formation. In this work, we have fabricated Si solar cells on ∼130 μm thick substrates using manufacturable processing, where rear side was passivated with a plasma-enhanced chemical vapor deposited SiOx/SiNx/SiOxNy stack and local back contacts using laser. As a result of both the rear surface passivation stack and the laser-fired local contacts, cell efficiencies of up to 17.6% on a 148.6 cm2 Float-zone Si wafer and 17.2% for a 156.8 cm2 multicrystalline Si wafer were achieved. PC-1D calculations revealed that the cells had a back surface recombination velocity (BSRV) of ∼400 cm/s and a back surface reflectance (BSR) of over 90%, as opposed to standard full Al-BSF cells having a BSRV of ∼800 cm/s and a 70% BSR. This result clearly indicates that the new technique of the passivation scheme and the patterning using laser developed in this study are promising for manufacturing high-efficiency PERC-type thin Si solar cells.  相似文献   

16.
Thin films of Cu2ZnSnS4 (CZTS), a potential candidate for absorber layer in thin film heterojunction solar cell, have been successfully deposited by spray pyrolysis technique on soda-lime glass substrates. The effect of substrate temperature on the growth of CZTS films is investigated. X-ray diffraction studies reveal that polycrystalline CZTS films with better crystallinity could be obtained for substrate temperatures in the range 643-683 K. The lattice parameters are found to be a=0.542 and c=1.085 nm. The optical band gap of films deposited at various substrate temperatures is found to lie between 1.40 and 1.45 eV. The average optical absorption coefficient is found to be >104 cm−1.  相似文献   

17.
CdSexTe1−x thin films of different compositions have been deposited on glass substrates by hot wall deposition method under conditions very close to thermodynamical equilibrium with minimum loss of material. The structural studies carried out on the deposited films revealed that they are crystalline in nature and exhibit either cubic zinc blende or hexagonal phase or both depending on the composition of the material. The lattice parameter values for both cubic and hexagonal phases have been determined and are observed to vary with composition according to Vegard’s law. The optical properties of the deposited CdSexTe1−x thin films have been studied using transmittance spectra. The spectra shows a sharp fall in transmittance at wavelength corresponding to the band gap of the material. The optical band gap has been determined and found to be direct allowed. The band gap has been observed to strongly depend on film composition. The variation of band gap with composition has been observed to be quadratic in nature exhibiting a bowing behaviour.  相似文献   

18.
High-temperature contact firing of screen printable metal pastes is getting more problematic as silicon wafers used in solar cell production are becoming thinner. Besides, an electronic degradation of the SixNy/c-Si interface occurs at these temperatures especially if the SixNy layer is directly deposited onto high-quality absorbers as on the front side of a-Si:H/c-Si hetero-contact solar cells of inverted geometry. The latter structure has been proposed as an easy producible high-efficiency solar cell. Low-temperature alternatives such as local ablation of SixNy with 355 nm laser radiation are examined with regard to the stability of the electronic quality of passivated areas between the openings in the SixNy layer. Contactless time-resolved microwave conductivity measurements (TRMC) are applied to measure changes in electronic passivation after these treatments. Subsequent galvanic metallization of the openings is optimized for its use as ohmic contacts.  相似文献   

19.
Textured ZnO:Al films with excellent light scattering properties as a front electrode of silicon thin film solar cells were prepared on glass substrates by an in-line rf magnetron sputtering, followed by a wet-etching process to modify the surface morphologies of the films. Deposition parameters and wet etching conditions of the films were controlled precisely to obtain the optimized surface features. All as-deposited films show a strong preferred orientation in the [0 0 1] direction under our experimental conditions. The microstructure of the films was significantly affected by working pressure and film compactness was reduced with increasing working pressure, while the effect of a substrate temperature on the microstructure is less pronounced. A low resistivity of 4.25×10−4 Ω cm and high optical transmittance of above 80% in a visible range were obtained in the films deposited at 1.5 mTorr and 100 °C. After wet etching process, the surface morphologies of the films were changed dramatically depending on the microstructure and film compactness of the initial films. By controlling the surface feature, the haze factor and angular resolved distribution of the textured ZnO:Al films were improved remarkably when compared with commercial SnO2:F films. The textured ZnO:Al and SnO2:F films were applied as substrates for a silicon thin film solar cells with tandem structure of a-Si:H/μc-Si:H. Compared with the solar cells with the SnO2:F films, a significant enhancement in the short-circuit current density of the μc-Si:H bottom cell was achieved, which is due to the improved light scattering on the highly textured ZnO:Al film surfaces in the long wavelength above 600 nm.  相似文献   

20.
Hydrogenated films of silicon nitride SiNx:H are largely used as antireflective coating as well as passivation layer for industrial crystalline and multicrystalline silicon solar cells. In this work, we present a low cost plasma enhanced chemical vapor deposition (PECVD) of this thin layer by using SiH4 and N2 as a reactive gases. A study was carried out on the variation effect of the ratio silane (SiH4) to nitrogen (N2) and time deposition on chemical composition, morphologies, reflectivity and carrier lifetime. The thickness was varied, in order to obtain a homogeneous antireflective layer. The Fourier transmission infrared spectroscopy (FTIR) shows the existence of Si–N and Si–H bonds. The morphologies of the sample were studied by Atomic Force Microscopy (AFM). The resulting surface of the SiNx:H shows low-reflectivity less than 5% in wavelength range 400–1200 nm. As a result, an improvement in minority carrier lifetime has been achieved to about 15 μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号