首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Porous films of titanium oxide were deposited by oblique reactive electron beam evaporation. Both as-deposited and annealed samples of these films were structurally characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The as-deposited films were found to consist of amorphous columns with a very fine structure while the annealed films consisted of polycrystalline anatase columns whose fine structure showed evidence of conglomeration. These films were sensitized with a photoactive dye and implemented into a dye sensitized solar cell (DSSC) configuration as the electron collecting electrode. Solar cells incorporating annealed titanium oxide films fabricated at deposition angles between 60° and 75° produced higher short current densities than conventional DSSC based on colloidal TiO2 film measured under the same conditions. The best performing solar cell incorporating annealed titanium oxide films was found to have a photoelectric conversion efficiency of 4.1%.  相似文献   

2.
Tungsten doped indium oxide (IWO) thin films have been investigated as an alternative to indium tin oxide (ITO) anodes in organic solar cells (OSCs). The surface morphology, electrical, and optical properties of the IWO films grown by electron beam deposition were studied as a function of oxygen flow rate. For 120 nm thick IWO films deposited on float glass substrates at 350 °C and oxygen flow rate of 35 sccm, an electrical resistivity of 4.78×10−4 Ω cm and average transmittance of over 78% between 400 and 2000 nm were obtained. OSCs based on poly(3-hexylthiophene) and [6,6]-phenyl C61-butlyric acid methyl ester were prepared on glass/IWO electrodes and the device performance was investigated as a function of IWO films with different oxygen flow rates. OSCs fabricated on the optimum IWO anode (oxygen flow rate of 30-35 sccm) exhibited a power conversion efficiency of ∼3.5%, which is comparable with the same device made on commercial glass/ITO electrodes (3.75%).  相似文献   

3.
Abstract

Zinc oxide nanorods were fabricated via a low temperature hydrothermal method on fluorine doped tin oxide (FTO) substrates. The concentrations of hexamethylenetetramine (HMT) and polyethyleneimine (PEI) were optimised to give nanorods with an aspect ratio of ~110. Post-growth thermal annealing and nitrogen plasma treatment led to significant enhancement of the UV emission peak (380 nm) and suppression of the deep level emission peak (600 nm). Although the post-growth treatments did not appear to affect the crystallinity of the ZnO nanorods, the efficiency of dye sensitised solar cells constructed following the post-growth thermal treatments saw a decrease in efficiency.  相似文献   

4.
The interface between an electrode and the organic active layer is an important factor in organic solar cells (OSCs) that influences the power conversion efficiency (PCE). In this report, a buffer layer of 2-thenylmercaptan/Au self-assembly film is introduced into OSCs as a substitute for the poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT: PSS) layer. The electrode/active layer interface is meliorated by Au-S coordinate bond of self assembly after applying this buffer layer. The series resistance reduces from 20 Ω cm2 in a device based on PEDOT:PSS to 10.2 Ω cm2. Correspondingly, the fill factor (FF) increases from 0.50 to 0.64. Moreover, due to the dipole of this self-assembled layer, the open circuit voltage (Voc) also increases slightly from 0.54 V to 0.56 V and the PCE reaches 2.5%.  相似文献   

5.
The preparation and characteristics of flexible indium tin oxide (ITO) electrodes grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible organic solar cells are described. It was found that both electrical and optical properties of the flexible ITO electrode were critically dependent on the Ar/O2 flow ratio in the continuous roll-to-roll sputter process. In spite of the low substrate temperature (<50 °C), we can obtain the flexible ITO electrode with a sheet resistance of 47.4 Ω/square and an average optical transmittance of 83.46% in the green region of 500-550 nm wavelength. Both X-ray diffraction and field emission scanning electron microscopy analysis results showed that all flexible ITO electrodes grown on the PET substrate were amorphous with a very smooth and featureless surface, regardless of the Ar/O2 flow ratio due to the low substrate temperature, which is maintained by a cooling drum. In addition, the flexible ITO electrode grown on the Ar ion-beam-treated PET substrates showed more stable mechanical properties than the flexible ITO electrode grown on the wet-cleaned PET substrates, due to an increased adhesion between the flexible ITO and the PET substrates. Furthermore, the flexible organic solar cell fabricated on the roll-to-roll sputter-grown flexible ITO electrode at an optimized condition exhibited a power conversion efficiency of 1.88%. This indicates that the roll-to-roll sputtering technique is a promising continuous sputtering process in preparing flexible transparent electrodes for flexible solar cells or displays.  相似文献   

6.
We report performance improvement of organic (P3HT:PCBM) photovoltaic cell by introducing a solution-based WOx anode buffer layer, between the PH500 conducting polymer and the active layer. By introducing a solution-based WOx on PH500, the cell efficiency increases by 13% compared to that of the organic photovoltaic cell with only PH500. The organic cell exhibits JSC of 12.31 mA/cm2, VOC of 0.61 V, FF of 58.22%, and the power conversion efficiency of 4.35%. The improved cell performance is due to effective hole collection injected from electron donors (P3HT) in P3HT:PCBM active layer by forming WOx nanoparticle on the conducting anode.  相似文献   

7.
Efficient organic solar cells (OSCs) based on the blends of poly(3-hexylthiophene): fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester composites have been fabricated on fluorine-doped tin oxide coated glass substrates using the sputtered nitrogen doped amorphous chromium oxide (NACO) film as a hole-transporting layer (HTL). Optimized parameters for p-type NACO layer fabrication have been obtained through argon/oxygen/nitrogen flow ratio variations. Based on the HTL, the power conversion efficiency up to 3.17% has been achieved. With the help of X-ray photoelectron spectroscopy and Hall-effect measurements, we come to a conclusion that CrN in amorphous chromium oxide (ACO) film could prevent water dissociation and hydroxylation at defect sites on the ACO film surface, and reduce the electrical resistivity of films. The stability of NACO as HTL has been improved compared with that of ACO as HTL, which can improve the performance of OSC.  相似文献   

8.
Effect of zinc oxide on yttria doped ceria   总被引:2,自引:0,他引:2  
Solid electrolyte ceramics consisted of ceria, yttria and zinc oxide has been synthesized through solid state reaction. With the zinc oxide content over 0.4 mol.%, this material is able to achieve a relative density of 96% at 1375 °C, about 200 °C lower than that without zinc oxide. The result of XRD reveals that the lattice parameter increased with the concentration of zinc oxide up to 0.6 mol%, suggesting its solubility limit for fluorite structure of ceria. It is also found that this doping level is coincident with that where it has the highest ionic conductivity. Furthermore, it is detected by EDS that the excess zinc oxide tends to agglomerate and locate on the surface of sintered sample when the addition exceeds the solubility limit.  相似文献   

9.
Spray coating is a high throughput coating technique that is scalable and adaptable for organic photovoltaic manufacturing. To ensure uniform coating of the organic layers, the wettability, surface tension and boiling points of the solvents have to be optimized. Here, we used microscopic videos to understand the dynamics of the spray coating process. By optimizing the wettability and drying time of the PEDOT:PSS suspension on a hydrophobic surface, we attained a spray coated transparent anode without compromising on device performance. We further applied this vacuum-free process to a near infrared absorber to achieve a transparent organic solar cell with close to 60% transparency.  相似文献   

10.
This paper describes the investigations of CIS-based solar cells with a new InxSey (IS) buffer layer. Studies were concentrated on determining the deposition conditions to get InxSey thin films with adequate properties to be used in substitution of the CdS buffer layer, usually employed in the fabrication of this type of devices. Before the solar cell fabrication, the buffer layers grown by evaporation of the In2Se3 compound were characterized through transmittance and X-ray diffraction measurements. It was found that good results can be obtained using indium selenide film as the buffer layer, grown in the In2Se3 phase.Solar cells with structure Mo/CIS/In2Se3/ZnO were fabricated. The ZnO layer was deposited by reactive evaporation and the absorber CIS layer was grown on Mo by a two-stage process. The preliminary results obtained with this type of solar cells are Jsc=30.8 mA/cm2, Voc=0.445 V, FF≈0.6 and η=8.3% with an irradiance of 100 mW/cm2. Solar cells fabricated using a CdS buffer layer deposited by CBD on CIS substrate, prepared under the same conditions used in the fabrication of Mo/CIS/In2Se3/ZnO cells, gave the following results: Voc=0.43 V, Jsc=34 mA/cm2, FF≈0.63 and η=9.2%.  相似文献   

11.
Transparent electrode with ZnO nanoparticles in tandem organic solar cells   总被引:1,自引:0,他引:1  
The transparent inter-electrodes with the p/n heterojunction consisting of the solution-processible ZnO nanoparticles as the n-type and the conventional hole injection layers (MoO3 or PEDOT:PSS) as the p-type materials are studied for developing tandem organic solar cells employing different band gap active materials (i.e., P3HT:PCBM blend layer for larger band gap material in the bottom cell and ZnPc/C60 bilayer for smaller band gap material in the top cell). For the ZnO/PEDOT:PSS inter-electrode, the VOC corresponding to the sum of VOC’s of the top and bottom unit cells is obtained, denoting that the two unit cells are successfully connected in series. For the ZnO/MoO3 inter-electrode, the open-circuit voltage (VOC) of the tandem cell is smaller than the sum of VOC’s of the top and bottom unit cells, but it can be increased by inserting a very thin Al layer (∼3 nm) between ZnO and MoO3 (ZnO/Al/MoO3) as the recombination center for carriers.  相似文献   

12.
Small molecule organic solar cell with an optimized hybrid planar-mixed molecular heterojunction (PM-HJ) structure of indium tin oxide (ITO)/ poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) doped with 4 wt% sorbitol/ pentacene (2 nm)/ copper phthalocyanine (CuPc) (10 nm)/ CuPc: C60 mixed (20 nm)/ fullerene (C60) (20 nm)/ bathocuproine (BCP) (10 nm)/Al was fabricated. PEDOT: PSS layer doped with 4 wt% sorbitol and pentacene layer were used as interlayers between the ITO anode and CuPc layer to help the hole transport. And then the short-circuit current (Jsc) of solar cell was enhanced by inserting both the PEDOT: PSS (4 wt% sorbitol) and the pentacene, resulting in a 400% enhancement in power conversion efficiency (PCE). The maximum PCE of 3.9% was obtained under 1sun standard AM1.5G solar illumination of 100 mW/cm2.  相似文献   

13.
Dye-sensitized solar cells based on nanoporous oxide semiconductor thin films such as TiO2, Nb2O5, ZnO, SnO2, and In2O3 with mercurochrome as the sensitizer were investigated. Photovoltaic performance of the solar cell depended remarkably on the semiconductor materials. Mercurochrome can convert visible light in the range of 400–600 nm to electrons. A high incident photon-to-current efficiency (IPCE), 69%, was obtained at 510 nm for a mercurochrome-sensitized ZnO solar cell with an I/I3 redox electrolyte. The solar energy conversion efficiency under AM1.5 (99 mW cm−2) reached 2.5% with a short-circuit photocurrent density (Jsc) of 7.44 mA cm−2, a open-circuit photovoltage (Voc) of 0.52 V, and a fill factor (ff) of 0.64. The Jsc for the cell increased with increasing thickness of semiconductor thin films due to increasing amount of dye, while the Voc decreased due to increasing of loss of injected electrons due to recombination and the rate constant for reverse reaction. Dependence of photovoltaic performance of mercurochrome-sensitized solar cells on semiconductor particles, light intensity, and irradiation time were also investigated. High performance of mercurochrome-sensitized ZnO solar cells indicate that the combination of dye and semiconductor is very important for highly efficient dye-sensitized solar cells and mercurochrome is one of the best sensitizers for nanoporous ZnO photoelectrode. In addition, a possibility of organic dye-sensitized oxide semiconductor solar cells has been proposed as well as one using metal complexes.  相似文献   

14.
Zinc oxide (ZnO) is now often used as a transparent conductive oxide for contacts in thin-film silicon solar cells. This paper presents a study of ZnO material deposited by the low-pressure chemical vapour deposition technique, in a pressure range below the pressures usually applied for the deposition of this kind of material. A temperature series has been deposited, showing a morphological transition around 150 °C. ZnO samples deposited with temperatures just higher than this transition are constituted of large grains highly oriented along a single crystallographic orientation. These “monocrystals” lead to low resistivity values, showing a clear correlation between the size of the surface grains and the electrical performance of corresponding films. Additionally, these large grains also yield ZnO layers with high transparency and high light-scattering power, specially suitable for solar cell technology based on thin-film silicon.  相似文献   

15.
In this work, we study the effect of the transparent conducting oxide (TCO) and the polymer applied (MEH-PPV or P3HT) on the photovoltaic properties of TCO/TiO2/polymer/Ag bi-layer solar cells. The solar cells were analyzed under inert atmosphere conditions resembling an encapsulated or sealed device. We demonstrate that the substrate applied, ITO or FTO, modifies the crystalline structure of the TiO2: on an ITO substrate, TiO2 is present in its anatase phase, on an FTO, the rutile phase predominates. Devices fabricated on an FTO, where the rutile phase is present, show better stability under inert atmospheres than devices fabricated on an ITO, anatase phase. With respect to the polymer, devices based on MEH-PPV show higher Voc (as high as 1 V), while the application of P3HT results in lower Voc, but higher Jsc and longer device stability. These observations have been associated to (a), the crystalline structure of TiO2 and (b) to the form the polymer is bonded to the TiO2 surface. In-situ IPCE analyses of P3HT-based solar cells show a red shift on the peak corresponding to TiO2, which is not present on the MEH-PPV-based solar cells. The latter suggest that P3HT can be linked to the TiO2 though the S-end atom, which results in devices with lower Voc. All these observations are also valid for devices, where the bare TiO2 is replaced by an Nb-TiO2. The application of an Nb-TiO2 with rutile structure in these polymer/oxide solar cells is the reason for their higher stability under inert atmospheres. We conclude that the application of TiO2 in its rutile phase is beneficial for long-term stability devices. Moreover there is an interplay between low Voc and Jsc in devices applying P3HT, since power conversion efficiency can be partially canceled by their lower Voc in comparison with MEH-PPV. These findings are important for polymer/oxide solar cells, but also for organic solar cells, where a layer of semiconductor oxides are in direct contact with a polymer, like in an inverted or tandem organic solar cells.  相似文献   

16.
In this work, the pyrite crystalline phase of iron disulfide nanoparticles (FeS2) about 20 to 30 nm was obtained by a two‐pot thermal method at 220°C. Subsequently, different concentrations of these nanoparticles were used as a doping agent for the conjugated poly‐3‐hexylthiophene (P3HT). The electrical resistivity of P3HT was decreased almost three orders of magnitude while adding FeS2 nanoparticles as doping, and dichlorobenzene solvent was a determinant factor for the dispersion of polymer with nanoparticles. Doped‐P3HT dichlorobenzene solution was spin coated onto the FTO/TiO2 substrate to fabricate the FTO/TiO2/P3HT:FeS2/C‐Au hybrid solar cells. Moreover, the power conversion efficiency (PCE) of hybrid devices was studied as a function of pyrite FeS2 nanoparticle concentration. The highest efficiency of 0.83% was obtained at 1% concentration of FeS2 nanoparticles. Hence, the results revealed that the FeS2 nanoparticles could be considered as an alternative charge carrier to develop the bulk hybrid solar cells.  相似文献   

17.
Bulk heterojunction solar cells utilizing soluble phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) have been investigated. The active layer was fabricated by spin-coating the mixed solution of C6PcH2 and 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM). The photovoltaic properties of the solar cell with bulk heterojunction of C6PcH2 and PCBM demonstrated the strong dependence of active layer thickness, and the optimized active layer thickness was clarified to be 120 nm. By inserting MoO3 hole transport buffer layer between the positive electrode and active layer, the FF and energy conversion efficiency were improved to be 0.50 and 3.2%, respectively. The tandem organic thin-film solar cell has also been studied by utilizing active layer materials of C6PcH2 and poly(3-hexylthiophene) and the interlayer of LiF/Al/MoO3 structure, and a high Voc of 1.27 V has been achieved.  相似文献   

18.
Organic solar cells were fabricated using a new amine–bithiophene copolymer as an electron donor layer and 3,4,9,10-perylenetetracarboxyl-bis-benzimidazole (PV) as an electron acceptor layer. The amine–thiophene copolymer, poly{(9,9-dioctylfluorene-2,7-diyl)-co-[N,N′-bis(4-tert-butylphenyl)benzidine-N,N′-bis(phenylene-4,4′-diyl)]-co-(2,2′-bithiophene-5,5′-diyl)} (PF8-TPD-T2), had a glass transition temperature (Tg) at about 77 °C, and exhibited liquid crystalline states and a high hole mobility. The rigid bithiophene units in the polymer chain are probably responsible for the formation of the liquid crystalline states and the high hole mobility. A solar cell made of the PF8-TPD-T2 copolymer and PV layers showed a photocurrent density of 0.99 mA/cm2, an open-circuit voltage of 0.61 V, and an energy conversion efficiency of 0.332%. The photocurrent of the solar cells was generated at both the copolymer and PV layers, and the copolymer layer was the main contributor to photocurrent when the thickness of the polymer was about 17 nm. After annealing the solar cells at temperatures well above the glass transition temperature (Tg) of the copolymer, the photocurrent action spectra of the solar cells were broadened and the performance was improved. The changes were mostly due to the increased contribution of the PV layer to the photocurrent by the annealing.  相似文献   

19.
In this letter, we report on an efficient organic tandem solar cell combining a solid state dye-sensitized with a ZnPc/C60-based, vacuum deposited bulk heterojunction solar cell. Due to an effective serial connection of both subcells and to the complementary absorption of the dyes used, a power conversion efficiency of ηp=(6.0±0.1)% was achieved under simulated AM 1.5 illumination. The device parameters are , and FF=(54±1)%.  相似文献   

20.
Polymer and organic solar cells degrade during illumination and in the dark. This is in contrast to photovoltaics based on inorganic semiconductors such as silicon. Long operational lifetimes of solar cell devices are required in real-life application and the understanding and alleviation of the degradation phenomena are a prerequisite for successful application of this new and promising technology. In this review, the current understanding of stability/degradation in organic and polymer solar cell devices is presented and the methods for studying and elucidating degradation are discussed. Methods for enhancing the stability through the choice of better active materials, encapsulation, application of getter materials and UV-filters are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号