首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the paper, a novel kind of imidazolium based poly(urethane-ionic liquid)/multi-walled carbon nanotubes (PUIL/MWCNT) composites was facilely prepared by uncovalent ways. The imidazolium based ionic liquid (IL) greatly improved the dispersion of pristine MWCNTs in PUIL by the π-cation interaction formed between the imidazolium cation and the π-electron of MWCNTs. The PUIL/MWCNT composites showed obviously increased modulus, glass transition temperature and tensile strength in comparison with PU/MWCNT composites. The thermal and mechanical properties of the PUIL/MWCNT composites presented significant increase with low load of the MWCNTs. It indicated the interactions between PUIL and MWCNTs played an important role to enhance the performances of the composites.  相似文献   

2.
Inexpensive, non-toxic, and biocompatible materials that can disperse multiwall carbon nanotubes (MWCNTs) in aqueous solutions through a non-covalent approach while retaining their unique electronic and photonic properties are highly preferred. In this article, we introduce the use of an amphiphilic dipeptide derivative, aspartame, as an effective dispersing agent in preparing highly stable suspensions under ultrasonication. The results demonstrate that aspartame was absorbed by the nanotube surface possibly because of non-covalent ππ stacking between the aromatic group of aspartame and the CNT backbone. In addition, the resulting MWCNT/aspartame composites remained stably dispersed over a wide range of pH values. The chronoamperometric measurements of MWCNT/aspartame composite-coated electrodes for hydrogen peroxide demonstrated better electrochemical detection performance, as characterized by significantly enhanced step current, higher sensitivity, and reduced potential compared with bare electrodes.  相似文献   

3.
In this work, a nanoscaled Ni surface coating for multi-walled carbon nanotube (MWCNT) is proposed for the improvement of the interfacial properties between MWCNTs and epoxy resins in nanocomposites. The rheological behaviors and mechanical properties of the nanocomposites were investigated in a frequency sweep experiment with oscillatory rheometry and a universal test machine, respectively. The rheological behaviors of the nanocomposites proved the good dispersion behaviors of the Ni-coated MWCNTs in the matrix, demonstrating an increase in the suspension viscosity, G″, and G′, proving the high mechanical interfacial properties of the final composites.  相似文献   

4.
In the present study, multi-walled carbon nanotubes/hydroxyapatite (MWCNTs/HA) nanocomposites with various MWCNT contents were manufactured by sol-gel processing. The MWCNTs/HA powder was characterized using field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman analysis. The results show that the MWCNTs were fully covered with HA nanoparticles and help forming the crystallized hydroxyapatite. In addition, in vitro tests highlighted the excellent biocompatibility of the MWCNTs/HA composite.  相似文献   

5.
Zirconia/multi-walled carbon nanotube (ZrO2/MWCNT) nanocomposite was prepared by hydrothermal treatment of MWCNTs in ZrOCl2·8H2O aqueous solution. The morphology and structure of the synthesized ZrO2/MWCNT nanocomposite were characterized by transmission electron microscopy and X-ray diffraction analysis. It was found that ZrO2 nanoparticles homogeneously distributed on the sidewall of MWCNTs. Myoglobin (Mb), as a model protein to investigate the nanocomposite, was immobilized on ZrO2/MWCNT nanocomposite. Ultraviolet–visible spectroscopy and electrochemical measurements showed that the nanocomposite could retain the bioactivity of the immobilized Mb to a large extent. The Mb immobilized in the composite showed excellent direct electrochemistry and electrocatalytic activity to the reduction of hydrogen peroxide (H2O2). The linear response range of the biosensor to H2O2 concentration was from 1.0 to 116.0 μM with the limit of detection of 0.53 μM (S/N = 3). The ZrO2/MWCNT nanocomposite provided a good biocompatible matrix for protein immobilization and biosensors preparation.  相似文献   

6.
《Composites Part B》2013,44(8):3541-3548
Electrically conductive dodecyl-benzene-sulfonic-acid (DBSA) doped polyaniline (Pani) nanocomposites were prepared with multi-walled carbon nanotubes (MWCNTs) by in situ oxidative polymerization of aniline in the presence of different amounts of MWCNTs. The stability of the nanocomposites in terms of DC electrical conductivity retention was studied in ambient atmosphere by isothermal accelerated aging and cyclic accelerated aging techniques. The MWCNT/Pani nanocomposites were observed to be thermally more stable under ambient environmental conditions than Pani. Such nanocomposites with high thermal stability may find a place as future materials for the replacement for Pani.  相似文献   

7.
We herein report the effects of interfacial reinforcement on mechanical and electrical properties of nanocomposites based on polylactide (PLA) and multi-walled carbon nanotube (MWCNT). For this purpose, a series of MWCNTs grafted with PLA chains of various lengths (MWCNT-g-PLAs) were prepared by ring-opening polymerization of l-lactide with carboxylic acid-functionalized MWCNT (MWCNT-COOH). MWCNT-g-PLAs were then mixed with commercial PLA to obtain PLA/MWCNT-g-PLA nanocomposites with 1.0 wt.% MWCNT content. It was revealed that morphological, mechanical, and electrical properties of PLA/MWCNT-g-PLA nanocomposites were strongly dependent on the PLA chain length of MWCNT-g-PLAs. FE-SEM images exhibited that the nanocomposites containing MWCNT-g-PLA with longer PLA chain length exhibited better dispersion of MWCNTs in the PLA matrix. Initial moduli and tensile strengths of PLA/MWCNT-g-PLA composites increased with the increment of chain length of PLA grafted on MWCNTs, which attributes to the improved interfacial adhesion between the grafted PLA chains of MWCNT-g-PLA and the PLA matrix. As a result, the experimental initial modulus (2775 ± 193 MPa) of the nanocomposite including MWCNT-g-PLA with PLA chains of average molecular weight of 530 g/mol was quite close to the theoretical value (2911 MPa) predicted for the nanocomposite with perfect interfacial adhesion. Unexpectedly, electrical resistivities of PLA/MWCNT-g-PLA nanocomposites were found to increase from ∼104 to ∼1012 Ω/sq with increasing the PLA chain length of MWCNT-g-PLA, which is due to the fact that the PLA chains grafted on MWCNTs prevent the formation of the electrical conduction path of MWCNTs in the PLA matrix.  相似文献   

8.
Electrically conductive dodecyl-benzene-sulfonic-acid (DBSA) doped polyaniline (Pani) nanocomposites were prepared with multi-walled carbon nanotubes (MWCNTs) by in situ oxidative polymerization of aniline in the presence of different amounts of MWCNTs. The stability of the nanocomposites in terms of DC electrical conductivity retention was studied in ambient atmosphere by isothermal accelerated aging and cyclic accelerated aging techniques. The MWCNT/Pani nanocomposites were observed to be thermally more stable under ambient environmental conditions than Pani. Such nanocomposites with high thermal stability may find a place as future materials for the replacement for Pani.  相似文献   

9.
The effects of various functionalized multi-walled carbon nanotubes (MWCNTs) on morphological, thermal, and mechanical properties of an epoxy based nanocomposite system were investigated. Chemical functionalization of MWCNT by oxidation (MWCNT-COOH) and direct-fluorination (MWCNT-F) were confirmed by FTIR, Raman spectroscopy, and TGA. Utilizing in situ polymerization, 1 wt% loading of MWCNT was used to prepare epoxy-based nanocomposites. Compared to the neat epoxy system, nanocomposites prepared with MWCNT-COOH showed 25.5% increase in ultimate flexural strength and 54.8% increase in flexural modulus. A decrease in strength was observed for the MWCNT-F nanocomposites. The premature degradation was attributed to a presumable catalyzation by hydrofluoric acid, HF, which evolved from the MWCNT-F during the curing process. However, only the MWCNT-F nanocomposites showed 22% increase in thermal properties (Tg). All nanophased systems showed increase in storage modulus.  相似文献   

10.
The effect of multi-walled carbon nanotube (MWCNT) addition on mechanical properties of epoxy resin was investigated to obtain the tensile strength, compressive strength and Young’s modulus from load versus displacement graphs. The result shows that the tensile strength, compressive strength and Young’s modulus of epoxy resin were increased with the addition of MWCNT fillers. The significant improvements in tensile strength, compressive strength and Young’s modulus were obtained due to the excellent dispersion of MWCNT fillers in the epoxy resin. The dispersion of MWCNT fillers in epoxy resin was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis.Also, Halpin–Tsai model was modified by considering the average diameter of internal/external of multi-walled nanotube and orientation factor (α) to calculate the Young’s modulus of multi-walled carbon nanotubes (MWCNTs)/epoxy resin composite. There was a good correlation between the experimentally obtained Young’s modulus and modified Halpin–Tsai model.  相似文献   

11.
Stable Ag nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) have been successfully synthesized by calcinations of the complexes of Ag cation and acid-treated MWCNTs under sparging N(2). The nanocomposites are characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy. The results indicate that Ag nanoparticles are relatively homogeneously dispersed on the surface of MWCNTs. The bactericidal properties of Ag/MWCNT nanocomposites are investigated with disk diffusion assay on the suspension samples inoculated with Escherichia coli. The results show that Ag/MWCNTs-500 nanocomposites possess excellent bactericidal property because of their suitable particle size (15 nm). Moreover, Ag nanoparticles supported on MWCNTs are very stable for half a year. What is more, the bactericidal effect was enhanced obviously under solar irradiation. This is because MWCNTs can absorb near-infrared light to kill parts of bacteria. A possible formation mechanism is also proposed in this article.  相似文献   

12.
Nanobiotechnology is a promising field concerned with the using of engineered nanomaterials, which leads to the improvement of new human remedial against pathogenic bacteria modalities. In this work, silver nanoparticles (AgNPs) were prepared by an easy, cheap and low‐cost electro‐chemical method. The AgNPs were then loaded successfully on to multi‐walled carbon nanotubes (MWCNTs) using a modified chemical reaction process. The AgNPs on the MWCNTs were well spread and evenly distributed on the surfaces of the long nanotubes with well‐graphitised walls as examined by high‐resolution transmission electron microscopy. X‐ray diffraction and transmission electron microscopy were used for sample characterisation. Good dispersion of AgNPs was obtained on the surface of MWCNTs, resulting in an efficient reactivity of the carbon nanotubes surfaces. Finally, the antibacterial activity of AgNPs/MWCNTs hybrid was evaluated against two pathogenic bacteria Pseudomonas aeruginosa and Staphylococcus aureus exhibited excellent activity.Inspec keywords: nanocomposites, X‐ray diffraction, nanofabrication, nanoparticles, transmission electron microscopy, toxicology, silver, antibacterial activity, microorganisms, nanomedicine, multi‐wall carbon nanotubes, electrochemistryOther keywords: engineered nanomaterials, human remedial, pathogenic bacteria modalities, silver nanoparticles, multiwalled carbon nanotubes, modified chemical reaction process, well‐graphitised walls, high‐resolution transmission electron microscopy, cytotoxicity properties, functionalised carbon nanotubes, carbon nanotube surfaces, nanobiotechnology, low‐cost electrochemical method, AgNP‐MWCNT hybrid, X‐ray diffraction, antibacterial activity, Pseudomonas aeruginosa, Staphylococcus aureus, Ag‐C  相似文献   

13.
Linear polyethyleneimine (PEI) was used as a non-covalent functionalizing agent to modify multi-walled carbon nanotubes (MWCNTs). Fe3O4 nanoparticles were then formed along the sidewalls of the as-modified MWCNTs through a simple solvothermal method. X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, and vibrating sample magnetometry were used to characterize the MWCNT/Fe3O4 nanocomposites. Results indicated that Fe3O4 nanoparticles with diameters ranging from 50 to 200 nm were attached to the surface of the MWCNTs by electrostatic interaction. PEI was found to improve the electrical conductivity of the MWCNT/Fe3O4 nanocomposites. The magnetic saturation value of these magnetic nanocomposites was 61.8 emu g−1. These magnetic MWCNT/Fe3O4 nanocomposites are expected to have wide applications in bionanoscience and technology.  相似文献   

14.
采用超声波分散法制备了聚偏氟乙烯(PVDF)/多壁碳纳米管(MWCNT)复合材料。利用扫描电子显微镜、差示扫描量热法和傅立叶变换红外光谱等方法研究了复合材料的形态,考察了MWCNT用量对复合材料结晶行为和力学性能的影响。结果表明,通过超声处理,PVDF和MWCNTs之间产生了相互作用,复合体以球状的形式存在。MWCNTs的引入导致具有压电性的β相形成和屈服强度的提高。根据实验结果,对PVDF/MWCNT复合球体和β相的形成机理提出了可能的解释。  相似文献   

15.
Inorganic nanocarbon hybrid materials are good alternatives for superior electrochemical performance and specific capacitance to their traditional counterparts. Nanocarbons act as a good template for the growth of metal nanoparticles on it and their hybrid combinations enhance the charge transport and rate capability of electrochemical materials without sacrificing the specific capacity. In this study, titanium dioxide nanotubes (TNT) are synthesized hydrothermally in the presence of multi-walled carbon nanotubes (MWCNT) where the latter acts as base template material for the metal oxide nanotube growth. The MWCNT–TNT hybrid material possesses very high dielectric strength and this is used to enhance the dielectric property of the polymer polyvinyledene fluoride (PVDF). Solution mixing was used to prepare the PVDF/MWCNT–TNT nanocomposites by varying the filler concentrations from 0.5 to 2.5 wt%. Excellent vapor sensing was noticed for the PVDF nanocomposites with different rate of response towards commonly used laboratory solvents. The composites and the fillers were characterized for its morphology and structural properties using scanning and transmission electron microscopy, X-ray diffraction studies and infrared spectroscopy. Vapor sensing was measured as relative resistance variations against the solvent vapors, and the dielectric properties of the composites were measured at room temperature during the frequency 102–107 Hz. Experimental results revealed the influence of filler synergy on the properties of PVDF and the enhancement in the solvent vapor detectability and dielectric properties reflects the ability of these composite films in flexible vapor sensors and in energy storage.  相似文献   

16.
《Composites Science and Technology》2007,67(11-12):2564-2573
The precursor of polyimide, polyamic acid, was prepared by reacting 4,4′-oxydianiline (ODA) with 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA). Unmodified, acid-modified and amine-modified multiwall carbon nanotubes (MWCNT) were separately added to the polyamic acid and heated to 300 °C to produce polyimide/carbon nanotube composite. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) microphotographs reveal that acid-modified MWCNT and amine-modified MWCNT were dispersed uniformly in the polyimide matrix. The effect of the acid and amine-modified MWCNTs on the surface and volume electrical resistivities of MWCNT/polyimide composites were investigated . The surface electrical resistivity of the nanocomposites decreased from 1.28 × 1015 Ω/cm2 (neat polyimide) to 7.59 × 106 Ω/cm2 (6.98 wt% unmodified MWCNT content). Adding MWCNTs influenced the glass transition temperatures of the nanocomposites. Modified MWCNTs significance enhanced the mechanical properties of the nanocomposites. The tensile strength of the MWCNT/polyimide composite was increased from 102 MPa (neat polyimide) 134 MPa (6.98 wt% acid modified MWCNT/polyimide composites).  相似文献   

17.
This study aims to investigate experimentally the effects of aspect ratio (length/diameter ratio) and concentration of multiwalled carbon nanotubes (MWCNTs) on thermal properties of high density polyethylene (HDPE) based composites. The aspect ratios of two types of MWCNT fillers are in the range of 200–400 and 500–3000. Composite samples were prepared by melt mixing up to weight fraction of 19% filler content, followed by a compression molding. Measurements of density, specific heat and thermal diffusivity (by modulated photothermal radiometry, PTR) were performed and effective thermal conductivities ke of nanocomposites were calculated using these values. The results show that the composites containing MWCNTs with higher aspect ratio have higher thermal conductivities than the ones with lower aspect ratio. In terms of conductivity enhancement ke/km  1, the results indicate that MWCNTs with higher aspect ratio provide three to fourfold larger enhancement than the ones with lower aspect ratio, at low filler concentrations.  相似文献   

18.
Multiwalled carbon nanotubes (MWCNTs)/poly(methyl methacrylate) (PMMA) nanocomposites were prepared by ultrasonic assisted emulsifier free emulsion polymerization technique with variable concentration of functionalized carbon nanotubes. MWCNTs were functionalized with H 2 SO 4 and HNO 3 with continuing sonication and polished by H 2 O 2 . The appearance of Fourier transform infrared absorption bands in the PMMA/MWCNT nanocomposites showed that the functionalized MWCNT interacted chemically with PMMA macromolecules. The surface morphology of functionalized MWCNT and PMMA/MWCNT nanocomposites were studied by scanning electron microscopy. The dispersion of MWCNT in PMMA matrix was evidenced by high resolution transmission electron microscopy. The oxygen permeability of PMMA/MWCNT nanocomposites gradually decreased with increasing MWCNT concentrations.  相似文献   

19.
Nanocomposites of carbon nanotubes with polyaniline (PANI) constitute promising conducting nanomaterials, due to their ease of synthesis, electrical conductivity, and environmental stability. Variously shaped multi-walled carbon nanotube (MWCNT)-PANI nanocomposites were synthesized, and their electrical conductivities were compared. This study shows that new synthetic methods were able to control the shapes and electrical conductivities of MWCNT-PANI nanocomposites. The shapes of the MWCNT-PANI nanocomposites were changed by altering the reactant concentrations and the sequence of adding the initiator, ammonium persulfate (APS). The use of surface-modified MWCNTs instead of pristine MWCNTs is also an important factor determining the shapes of the nanocomposites. It was found that the electrical conductivity is strongly dependent on the shape and PANI content. The electrical conductivities of the MWCNT-PANI nanocomposites increased when the PANI/MWCNT ratio was decreased. The nanocomposites were characterized via field emission transmission electron microscopy (FE-TEM), Fourier-transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy, and elementary analysis of the MWCNT-PANI nanocomposites.  相似文献   

20.
Effect of sonication time on the synthesis of the CdS nanoparticles within the matrix obtained through the covalent functionalization of multiwall carbon nanotube (MWCNT) with maleic anhydride (MA) – 1-octene copolymer was investigated. Cadmium chloride and thiourea were used as the raw materials. MWCNTs used for the matrix were synthesized by Catalytic Chemical Vapor Deposition using Fe-Co/Al2O3 as the catalyst. The obtained nanostructures were characterized by FTIR, XRD, Raman spectroscopy, TEM, SEM, TG and UV-Vis spectroscopy. Electrophysical properties of the polymer nanocomposites obtained using different periods of time for sonication were comparably investigated. The average CdS particle diameter was between 3.9–7.9 nm as confirmed independently by TEM and XRD. UV-Vis spectroscopy revealed that the obtained nanostructures are appropriate base materials for making optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号