首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Simple microstructures such as mesa and membrane are micromachined on singly and doubly rotated quartz plates. A stereographic analysis of 3-D etching shapes is used to recognize rhombohedral faces limiting micromachined structures. An iterative procedure is used to adjust the database in which first we generate extrema in the dissolution slowness for these faces, and second, we compare step-by-step theoretical 3-D etching shapes with experimental structures. Theoretical shapes for microstructures are found to be in satisfactory agreement with experiments.  相似文献   

2.
Two-Dimensional (2D) materials have attracted immense attention in recent years. These materials have found their applications in various fields, such as catalysis, adsorption, energy storage, and sensing, as they exhibit excellent physical, chemical, electronic, photonic, and biological properties. Recently, researchers have focused on constructing porous structures on 2D materials. Various strategies, such as chemical etching and template-based methods, for the development of surface pores are reported, and the porous 2D materials fabricated over the years are used to develop supercapacitors and energy storage devices. Moreover, the lattice structure of the 2D materials can be modulated during the construction of porous structures to develop 2D materials that can be used in various fields such as lattice defects in 2D nanomaterials for enhancing biomedical performances. This review focuses on the recently developed chemical etching, solvent thermal synthesis, microwave combustion, and template methods that are used to fabricate porous 2D materials. The application prospects of the porous 2D materials are summarized. Finally, the key scientific challenges associated with developing porous 2D materials are presented to provide a platform for developing porous 2D materials.  相似文献   

3.
We have studied electromagnetic losses of a frequency-converter-fed cage-induction motor by using a numerical machine model that includes eddy-current and hysteresis phenomena in electrical steel sheets. We used the model to solve the two-dimensional (2-D) time-harmonic field and winding equations of a cage-induction machine, utilizing a finite-element method and phasor variables. We used complex reluctivity to couple the hysteresis and eddy currents in the sheets with the 2-D analysis. The model modifies the absolute value of the reluctivity according to a one-dimensional (1-D) eddy-current solution developed in the lamination thickness. To define the argument of the reluctivity, we applied both the 1-D field solution and measured hysteresis data. We compared computations of additional electromagnetic losses in a 37-kW test machine due to the higher harmonics of a frequency-converter supply with experimental results. The agreement is found to be reasonable.   相似文献   

4.
Two-dimensional silicon nanodome arrays are prepared on large areas up to 50 cm2 exhibiting photonic band structure effects in the near-infrared and visible wavelength region by downscaling a recently developed fabrication method based on nanoimprint-patterned glass, high-rate electron-beam evaporation of silicon, self-organized solid phase crystallization and wet-chemical etching. The silicon nanodomes, arranged in square lattice geometry with 300 nm lattice constant, are optically characterized by angular resolved reflection measurements, allowing the partial determination of the photonic band structure. This experimentally determined band structure agrees well with the outcome of three-dimensional optical finite-element simulations. A 16% photonic bandgap is predicted for an optimized geometry of the silicon nanodome arrays. By variation of the duration of the selective etching step, the geometry as well as the optical properties of the periodic silicon nanodome arrays can be controlled systematically.  相似文献   

5.
Characterization of the asphalt mixture microstructure using two dimensional (i.e., 2-D) imaging techniques could be an economically efficient approach. However, the features that have been captured and quantified using 2-D imaging techniques in most published research are limited to simplistic analyses of aggregate structure. This paper focuses on introducing a more elaborate method for characterization of the internal structure of aggregates to define performance related parameters that could be used as quality indicators of mixes. These indicators are proposed as important properties that complement the volumetric properties so wide relied on for acceptance of mixture designs. The results of the study show that aggregate structure can be characterized using a combination of newly developed image analysis indices namely: number of aggregate-to-aggregate proximity zones, total proximity zone length, and proximity zone plane orientation. A software developed in a previous study and significantly modified for this study, is used to process digital images of a set of asphalt mixtures with different gradations, binder contents, types of modification, compaction efforts, compaction temperatures, and methods. The results demonstrate that the internal structure indices correlate well with rutting performance, as well as with low temperature thermal contraction of asphalt mixtures. Additionally, the indices can be successfully used to show the effects of compaction effort, compaction method and temperature, gradation of aggregates, and binder modification on the mixture internal structure. The results indicate potential for using this method for quality control of mixtures during production.  相似文献   

6.
Lithiation and delithiation of porous silicon were studied using reflection high energy electron diffraction (RHEED), two-dimensional photoelectron diffraction, and a stereo atom-scope, which is realized by the combination of a display-type spherical mirror analyzer and circularly polarized soft X-ray. A nanosized porous silicon layer was prepared by electrochemical etching of p-type silicon (001) wafer in ethanolic solutions containing hydrofluoric acid. The morphology of the as-grown porous silicon as observed using SEM was filled with about 9 nm holes. This porous silicon also retains the crystallographic orientation of the wafer from which it was etched and is optically active with visible photoluminescence. The measured RHEED pattern and 2π steradian Si 2p photoelectron diffraction pattern from Si (001) surface showed an increase in lattice constant by lithiation, and that change in lattice constant was restored to its original values by delithiation.  相似文献   

7.
Low temperature (less than 600 degrees C) deposition of carbon nanofilaments (CNFs) could be achieved on the silicon oxide substrate by thermal chemical vapor deposition system. We used Fe(CO)5 as the catalyst precursor for CNFs formation. For the enhancement of CNFs formation density, the source gas flow was intentionally manipulated as the cyclic on/off modulation of C2H2/H2 flow during the initial deposition stage. The CNFs formation density on silicon oxide substrate could be much enhanced by the cyclic modulation process having the higher growing/etching time ratio (180/30 s). Furthermore, the lattice structures of CNFs developed into carbon nanotubes at the higher growing/etching time ratio (180/30 s) case. The solely hydrogen gas feeding (C2H2 flow off) time during the initial deposition stage seems to play an important role for the variation in the CNFs formation characteristics by the cyclic modulation process.  相似文献   

8.
Studies of zircon grains using optical microscopy, micro-Raman spectroscopy, and scanning electron microscopy (SEM) have been carried out to characterize the surface of natural zircon as a function of etching time. According to the surface characteristics observed using an optical microscope after etching, the zircon grains were classified as: (i) homogeneous; (ii) anomalous, and (iii) hybrid. Micro-Raman results showed that, as etching time increases, the crystal lattice is slightly altered for homogeneous grains, it is completely damaged for anomalous grains, and it is altered in some areas for hybrid grains. The SEM (energy dispersive X-ray spectroscopy, EDS) results indicated that, independent of the grain types, where the crystallinity remains after etching, the chemical composition of zircon is approximately 33% SiO(2):65% ZrO(2) (standard natural zircon), and for areas where the grain does not have a crystalline structure, there are variations of ZrO(2) and, mainly, SiO(2). In addition, it is possible to observe a uniform surface density of fission tracks in grain areas where the determined crystal lattice and chemical composition are those of zircon. Regarding hybrid grains, we discuss whether the areas slightly altered by the chemical etching can be analyzed by the fission track method (FTM) or not. Results of zircon fission track and U-Pb dating show that hybrid and homogeneous grains can be used for dating, and not only homogeneous grains. More than 50 sedimentary samples from the Bauru Basin (southeast Brazil) were analyzed and show that only a small amount of grains are homogeneous (10%), questioning the validity of the rest of the grains for thermo-chronological evolution studies using zircon FTM dating.  相似文献   

9.
非均匀材料破坏过程数值模拟的边界元法研究   总被引:5,自引:1,他引:4  
用格子模型和统计分布模拟非均匀材料性质的初始分布,针对二维非均匀材料格子模型建立了重复多子域边界元法求解方程。通过把各行子域集成为亚子域,然后对链状排列的亚子域应用域转移矩阵法进行求解。由于使用的域转移矩阵法对内存的要求仅略大于一个亚子域的求解,以及重复多子域法只需要进行一次系数矩阵积分,因而可以大大提高求解的规模和效率。在此基础上,对非均匀脆性材料在简单载荷作用下的破坏过程进行了数值模拟。采用重复多子域法和域转移矩阵法,可以得到子域内高精度的连续应力分布,为进一步研究非均匀材料裂纹萌生、扩展和破坏过程提供了基础。  相似文献   

10.
We investigate the electromagnetic properties of a two-dimensional (2-D) photonic-crystal array of vertical cavities for use in nonlinear optical image processing. We determine the 2-D photonic band structure of the array, and we discuss how it is influenced by the degree of interaction between cavities. We study the properties of defects in the 2-D lattice and show that neighboring cavities interact through their overlapping wave functions. This interaction can be used to produce nearest-neighbor nonlinear Boolean functions such asand, or, and xor, which are useful for optical image processing. We demonstrate the use of 2-D photonic bandgap structures for image processing by removing noise from a sample image with a nearest-neighbor and function.  相似文献   

11.
Surface modifications have a great potential for selective emission and absorption for applications in photonics, energy conversion, and biosensing. Pattern-induced radiative property changes can be an important issue in the manufacturing and diagnostics of microelectronic devices. This work investigates the polarized diffraction of micromachined silicon wafers. Both one-dimensional (1-D) and two-dimensional (2-D) periodic microstructures are manufactured by plasma-assisted anisotropic etching. The rotating mask method is used to produce 2.25 × 106 2-D structures in a single sample (7.5 × 7.5 mm2). Surface topography is characterized by using a scanning electron microscope (SEM). A bidirectional scatterometer with high accuracy and angular resolution measures the diffraction patterns from the microstructured silicon surfaces at a wavelength of 635 nm. The diffraction patterns follow the grating equation, which are caused by microstructures and their orientations. Predicted diffraction angles are in excellent agreement with the experimental results.  相似文献   

12.
In this work, we studied the photovoltage response of an antidot lattice to microwave radiation for different antidot parameters. The study was carried out in a Si/SiGe heterostructure by illuminating the antidot lattice with linearly polarized microwaves and recording the polarity of induced photovoltage for different angles of incidence. Our study revealed that with increased antidot density and etching depth, the polarity of induced photovoltage changed when the angle of incidence was rotated 90 degrees. In samples with large antidot density and/or a deeply etched antidot lattice, scattering was dominated by electron interaction with the asymmetrical potential created by semicircular antidots. The strong electron–electron interaction prevailed in other cases. Our study provides insight into the mechanism of interaction between microwaves and electrons in an antidot lattice, which is the key for developing an innovative ratchet-based device. Moreover, we present an original and fundamental example of antidot lattice etching through the use of a two-dimensional electron gas. This system deals with a hole lattice instead of an electron depletion in the antidot lattice region.  相似文献   

13.
New high-quality silicon has been produced by Wacker Siltronics as potential starting material for a precision determination of the Avogadro constant, NA. An assessment of the uniformity of this material is an essential first step in determining whether this material is of sufficient quality to be used in this project. We have made extensive measurements to determine lattice parameter uniformity of several regions of this new material using the NIST lattice comparator. Measurements from this comparator have been shown to have a relative internal consistency near 1×10-8. In the course of these measurements we noted a significant dependence of lattice parameter values on surface preparation of the samples. Samples prepared by grinding followed by chemical-mechanical (C-M) polishing show a wider distribution than samples prepared by grinding followed by etching. Surface preparation procedures were altered to include etching after C-M polishing. This unexpected dependence on surface preparation raises the possibility that some of the NIST lattice comparison results presented at CPEM96 may be biased by surface preparation effects. To test this possibility, some of the samples included in our CPEM96 contribution have been etched and remeasured. Preliminary estimates of corrections to some NIST CPEM96 lattice comparison results appear to confirm that bias  相似文献   

14.
Abstract

In an effort to optimize axially compressed members of a wooden structure, composite 2-D lattice structures were designed and manufactured with wood-plastic composites as the panel and glass fiber reinforced plastic as the core by using a simple insert-glue method. The compressive behavior of composite 2-D lattice structures made of cores with different diameters and inclination angles was investigated. Analytical models were employed to predict the theoretical load capacity, equivalent compressive strength, and failure types of lattice structures. Reinforcing hoops were then made at the two ends of cores according to its force characteristics and failure type.  相似文献   

15.
A method for optimal positioning of piezoelectric actuators and sensors on a flexible structure is presented. First, a two-dimensional (2-D) model of a piezoelectric actuator bonded to a plate is obtained. Then, a Ritz formulation is used to find a state model of the system in view of its control. To define an optimal positioning strategy, an energy based approach is developed. This leads quite naturally to the study of controllability and observability properties of the overall dynamical model. A new criterion based on energy assessment is proposed to locate actuators and sensors  相似文献   

16.
High-aspect-ratio structures with thin corrugated walls have been obtained by processing of macroporous silicon with a trigonal lattice in anisotropic etchants. For this purpose, a pattern of seeding etch pits with a certain orientation relative to crystallographic axes is created prior to electrochemical etching and a solution of definite composition for treating macropores is used after anodizing. The possibility of using zigzag structures as anodes in lithium-ion batteries is discussed.  相似文献   

17.
An integrated 2-D model of a lithium ion battery is developed to study the mechanical stress in storage particles as a function of material properties. A previously developed coupled stress-diffusion model for storage particles is implemented in 2-D and integrated into a complete battery system. The effect of morphology on the stress and lithium concentration is studied for the case of extraction of lithium in terms of previously developed non-dimensional parameters. These non-dimensional parameters include the material properties of the storage particles in the system, among other variables. We examine particles functioning in isolation as well as in closely-packed systems. Our results show that the particle distance from the separator, in combination with the material properties of the particle, is critical in predicting the stress generated within the particle.  相似文献   

18.
Composite sandwich structures with lattice truss cores are attracting more and more attention due to their superior specific strength/stiffness and multi-functional applications. In the present study, the carbon fiber reinforced polymer (CFRP) composite sandwich panels with 2-D lattice truss core are manufactured based on the hot-pressing method using unidirectional carbon/epoxy prepregs. The facesheets are interconnected with lattice truss members by means of that both ends of the lattice truss members are embedded into the facesheets, without the bonding procedure commonly adopted by sandwich panels. The mechanical properties of the 2-D lattice truss sandwich panels are investigated under out-of-plane compression, shear and three-point bending tests. Delamination of the facesheets is observed in shear and bending tests while node failure mode does not occur. The tests demonstrate that delamination of the facesheet is the primary failure mode of this sandwich structure other than the debonding between the facesheets and core for conventional sandwiches.  相似文献   

19.
Hollow 1-D gold nanostructures with controlled morphology could be readily obtained by RF-sputtering of gold into porous matrices (polycarbonate, polyester), used as scaffolds at low temperatures. Post-synthesis membrane etching by oxygen plasmas or in solution enabled the preparation of free-standing Au nanotubes maintaining the original morphology, that are attractive elements in device structures, such as biosensors for DNA chips or nanoelectrode ensembles. The present results appear extremely promising for the scale-up of different kinds of 1-D materials.  相似文献   

20.
Variation of depth within a single etching spot (3 mm circular diameter) was observed in nanoporous GaN epilayer obtained on photo-assisted electrochemical etching of n and p-type GaN. The different etching depth regions were studied using microRaman and PL(yellow region) for both n-type and p-type GaN. From Raman spectroscopy, we observed that increase in disorder is accompanied by stress relaxation, as depth of etching increases for n-type GaN epilayer. This is well corroborated with scanning electron microscopy results. Contrarily, for p-type GaN epilayer we found that for minimum etching depth, stress in epilayer increases with increase in disorder. This is understood with the fact that as grown p-type GaN is more disordered compared to n-type GaN due to heavy Mg doping and further disorder leads to lattice distortion leading to increase in stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号