首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional (3D) observations of internal structures are important for evaluating material properties. Serial sectioning with destructive processes is traditionally employed as a 3D observation method. Identifying the boundaries of elements in microscope images and measuring the mechanical properties of each element are required for the evaluation of the mechanical properties of composite materials. This study provides a system for measuring the local hardness and elastic modulus by conducting indentation tests during serial sectioning processes. An automatic serial sectioning observation was performed during a combination process of precision cutting in high-speed milling with a single-crystal diamond tool and microscopic observation. A Vickers indenter was attached to a tool spindle table, and indentation tests were conducted under a displacement control process at submicron spatial resolution. The indentation modulus was obtained by analyzing the force–displacement profile measured during the unload process. The scale effects relating to the indentation depth in the measurements of the indentation modulus were confirmed for an Al alloy sample measured in this system. This study focused on the identification of components by using hardness information measured under the same indentation depth on a two-dimensional flat surface after precision cutting of the material. Three types of metal wires (1 mm diameter) embedded in plastic resin were used in the experiment. The hardness distributions on the serial sectioning surfaces were measured, and the values measured at each wire area on 3D positions were used for the identification of their material properties. This serial sectioning observation creates a 3D microstructural model including not only microscopic images, but also hardness and elastic modulus information for the identification of components in the microscopic area.  相似文献   

2.
The two aims of this study are first, determining the optimal welding process parameters by using the finite element simulation and second, determining the optimal tempering temperature by evaluating the mechanical properties of friction welded part for manufacturing large rotor shaft. Inertia welding was conducted in order to make the large rotor shaft of turbo charger for low speed marine diesel engine. The rotor shaft is composed of the 310mm diameter disk and the 140mm diameter shaft. Since diameters of disk and shaft are very different, the integration using friction welding reduces manufacturing cost compared with the forming process of which a disk and shaft are forged into one body. Finite element simulation was performed, because inertial welding friction process depended on many process parameters, including axial force, initial revolution speed and energy, amount of upset, and working time. It is expected that this modeling will significantly reduce the number of experimental trials needed when determining the optimal welding parameters. Inertia welding was carried out with optimal process parameter conditions obtained from the simulation results. Welded joint part, made by friction welding, had very poor mechanical properties, and so it required heat treatment. The base material used in the investigation was SFCMV1 (SANYO special steel, high strength low alloy Cr-Mo steel) of 140mm diameter. In the study, heat treatment test carried out quenching (950 °C, 4hr, oil cooling) and tempering (690–720 °C, 6hr, air cooling) for friction welding specimens. The various tests, including microstructure observation, tensile, hardness, and fatigue tests, were conducted to evaluate the mechanical properties under various heat treatment conditions after inertia welding.  相似文献   

3.
Effects of Co content and WC grain size on wear of WC cemented carbide   总被引:1,自引:0,他引:1  
Hiroyuki Saito  Akira Iwabuchi 《Wear》2006,261(2):126-132
WC cemented carbides are used extensively to improve abrasion resistance. Co content and WC grain size influence the mechanical properties of the cemented carbides. In this study, the effects of Co content and WC grain size of cemented carbide on wear were examined. We prepared 13 different cemented carbides with different Co content and WC grain size. Wear tests were carried out against 0.45% carbon steel under dry condition at 98 N and 232 mm/s. From the results, we found that wear increased with both Co content and WC grain size. Specific wear rate of the cemented carbides tested was in the range of 10−7 mm3/(N m). We discussed the wear properties with hardness and the mean free path of the cemented carbide. These two parameters alone cannot explain the wear property.  相似文献   

4.
During the operation of a scroll expander system overpressure may occur resulting in cavitation damage. Impacts due to implosion of cavitation bubbles near to suction ports can result in damage to the scroll plate in the expander. The accumulation of cavitation pits across the scroll plate leads to cavitation erosion hence efficiency drop. An experimental analysis to identify the mechanical damage of the cavitation on various steel surfaces with different liquid environments was conducted.Three liquid environments and four steel grades were utilised experimentally. The liquids used for the tests were distilled water, used as a reference liquid, and the two working fluids of the scroll expander a synthetic lubricant and a high molecular refrigerant. The steel grades were a high carbon (AISI 1085) and low carbon (AISI 1010) martensitic steel with retained austenite, a chromium martensitic steel (AISI 52100) and a martensitic scroll plate (SP) sample. An ultrasonic transducer was utilised to produce cavitation conditions using a 5 mm diameter probe. The comparison of the results revealed the most hostile liquid environment according to the morphology evaluation of the incubation pits. The cavitation mechanisms are discussed and the cavitation resistance of the steel grades is evaluated. The best performing steel material against cavitation is determined for the conditions described.  相似文献   

5.
A unique measuring system for the quantification of tri-axial (3-D) tyre contact force (or stress) distributions was designed, developed and used in several studies since 1994. The uniqueness of the system is defined by a textured measuring surface in order to represent a typical “textured” road surface. The system is referred to as the Stress-In-Motion (SIM) system. A single SIM measuring pad testing area comprises a total of 1020 supporting pins and a transverse array of 21 sensing elements, covering the entire tyre contact patch with in a single run. The SIM pad measuring system is modular in concept, allowing multiple SIM measuring pads to be used for e.g. wide base truck tyres, or a dual tyre configuration, or full axle measurements – using a quad SIM pad measuring system configuration. Tyre contact force (or stress) distributions are simultaneously captured in the three orthogonal directions X, Y and Z for a single, dual or full axle truck tyre configuration. Each of the sensing elements has a 9.7 mm diameter circular contact surface area (∼73.9 mm2) and is dimensionally optimised, allowing measurements in various tyre rolling conditions on a textured measuring surface. The textured surface induces some pre-conditioning of tyre–road contact properties, as it has small gaps around all supporting and measuring pins. The system is installed flush with the road surface, preferably on a rigid support base, and can be used for real tyre (or truck) rolling conditions. A single SIM measuring pad contains 63 strain measuring channels (3 × 21) for the sensing elements. Aspects such as SIM system design, sensing element calibration, system usage and outputs of specially developed software are illustrated. Several results of tri-axial road contact stress distributions are also presented.  相似文献   

6.
研究6061-T6铝合金-SUS301L不锈钢异种金属电阻点焊接头的微观组织特点及电极形状的影响规律。结果表明,铝-钢点焊接头具有熔-钎焊特征,铝合金熔核由α-Al胞状晶、胞状树枝晶和树枝晶组成,铝/钢界面层具有双层结构,靠近铝熔核侧主要为细针状Fe4Al13,靠近不锈钢侧主要为Fe2Al5金属间化合物,接头主要为界面断裂模式,铝/钢界面是点焊接头最薄弱的区域。电极形状对铝合金-不锈钢点焊接头具有明显的影响。获得的优化电极形状为:不锈钢侧为圆形平面电极,电极端面直径为10 mm;铝合金侧为球面电极,球面半径为35 mm。在优化电极条件下,铝合金-不锈钢点焊接头的熔核直径、拉剪力及压痕率分别为7.5 mm、4.7 kN和13.5%。与采用F型电极相比,其熔核直径和拉剪力分别提高53.1%和56.7%,压痕率降低47.3%。因此,采用优化电极更有利于改善铝合金-不锈钢电阻点焊接头的力学性能及表面质量。  相似文献   

7.
The present paper describes results from a recent research project aimed at forming a wear resistant coating based on chromium on tools to wood machining. Cr2N/CrN multilayer coatings deposited on HS6-5-2 steel substrates using cathodic arc evaporation were tested. These coatings were formed from 7 bilayers being ca. 340 nm thick and equally thick Cr2N and CrN layers. For comparison, Cr2N and CrN monolayer coatings were also prepared. Hardness measurements, indentation and scratch tests, friction and wear were performed to characterize the mechanical properties. The wear tracks and Rockwell indentations enable to assess wear mechanisms of the coatings. The results of the Cr2N/CrN coatings investigated show high hardness: ca. about 22 GPa and a critical force being higher than 95 N and a low wear rate.The industrial tests of planer knives with Cr2N/CrN multilayer coatings were carried out on a down-spindle milling machine to determine the durability of tools with wear resistant coatings for woodworking. These tools show increase of “life time” two times. Another positive feature of the use of such tools is the increase of the quality of wood surface machined when compared with uncoated tools.  相似文献   

8.
In this work, the scratch and indentation properties of the outer and inner (nacre) layers of green mussel shells under dry and water-soaked conditions were investigated. In micro-scratch tests with increasing normal load, it was found that the scratch hardness of the inner and outer shell surfaces tended to decrease rapidly at lower loads as compared to the changes in hardness at higher loads. The readings varied in the ranges of 1.5-2.4 and 0.8-2.0 GPa for inner and outer surfaces, respectively. In nano-indentation tests, the responses of inner nacre were not affected by prior soaking as much as those of the outer shell surfaces. The outer shell surfaces showed a significant drop in nano-hardness from 4.5 to 2.8 GPa, while the Young's modulus increased from 62 to 84 GPa after soaking. However, the average nano-hardness and modulus of elasticity of nacreous inner layer only varied slightly in the range of 4.5-4.1 and 64-61 GPa, respectively. In addition, Vickers hardness readings showed that there was a detectable steady increase in micro-hardness of nacre as soaking time increased, although the differences were small. The reverse trend was observed for the outer layer. Analysis of the shells using Fourier transform infrared (FTIR) in reflectance mode gave strong evidence of the presence of sulphated saccharides, polyglycine and hydro-complex in the organic phase of the shell. Their interaction with calcium carbonate of the shell during scratch and indentation tests could be affected with the permeation of water due to soaking of shells.  相似文献   

9.
Composites of AlMgB14 with 0, 30, and 70 wt% of TiB2 were prepared by mechanical alloying and hot pressing. The composites’ belt abrasion resistance and cutting tool performance were measured by gravimetric analysis of material removal at varying loads and cutting speeds. AlMgB14-70 wt% TiB2 composites had high hardness and fracture toughness and the highest abrasive resistance of the three compositions. Cutting tool performance of AlMgB14-70 wt% TiB2 showed low wear due to chipping and little reaction with the Ti-6Al-4V work-piece. Subsurface damage and adhesion of the work-piece onto the tool material were gauged by SEM.  相似文献   

10.
V. Stoica  T. Itsukaichi 《Wear》2004,257(11):1103-1124
The aim of this study was to investigate the potential of applying hot isostatic pressing (HIPing) as a post-treatment to thermally sprayed wear resistant cermet coatings. The relative performance of the as-sprayed and hot isostatically pressed functionally graded WC-NiCrBSi coatings was investigated in sliding wear conditions. Coatings were deposited using a high velocity oxy-fuel (HVOF)—JP-5000 system, and HIPed without any encapsulation at temperatures of 850 and 1200 °C. The influence of post-treatment temperature on the coating's wear resistance was thus investigated. Sliding wear tests were carried out using a high frequency reciprocating ball on plate rig using steel and ceramic balls under two different loads. Results are discussed in terms of microstructural investigations, phase transformations, mechanical properties, and residual stress investigations. The results indicated significant alteration of the coating microstructure, brought about by the coating post-treatment, particularly when carried out at the higher temperature of 1200 °C. As a consequence, developments in the coating mechanical properties took place that led to higher wear resistance of the HIPed coatings.  相似文献   

11.
D. CreeM. Pugh 《Wear》2011,272(1):88-96
The dry sliding wear and friction behaviors of A356 aluminum alloy and a hybrid composite of A356 aluminum alloy and silicon carbide foam in the form of an interpenetrating phase composite were evaluated using a ball-on-disk apparatus at ambient conditions. The stationary 6.35 mm alumina ball produced a wear track (scar) diameter of 7 mm on the rotating specimen surface. Three different loads; 5 N, 10 N and 20 N were applied at a constant sliding speed of 33 mm/s for both materials. Wear tracks were characterized with a scanning electron microscope and measured with an optical surface profilometer. In general, this novel A356/SiC foam composite reduced the friction coefficient and wear rate from that of the base alloy for all loading conditions. In addition, as the load increased, the friction coefficient and wear rate decreased for both materials. The results indicate the composite could be used in light-weight applications where moderate strength and wear properties are needed.  相似文献   

12.
Aluminium bronze, well known for its good sliding properties, is frequently applied as tool material in sheet metal forming (SMF) of stainless steel, e.g. for the production of washing, refrigeration and cooking equipment. The limited hardness of the material makes it, however, sensitive to tool wear that is: volumetric wear of the tool due to sliding contact with the sheet material. Conventional wear tests like the rubber wheel abrasion test or the Taber abrader test cannot be used to simulate the interaction of the tooling with lubricated sheet material. Dedicated tribo tests are therefore conducted with the slider-on-sheet test. The aim of the research is to measure the specific wear rate of aluminium bronze at SMF-like conditions. Experimental results showed a pronounced influence of lubricant selection and sheet material selection. The measured specific wear rate varied from 10−8 mm3/N m for a smooth stainless steel sheet quality to 10−6 mm3/N m for a rough surface quality.  相似文献   

13.
In the chip refining process used for mechanical pulp production, wood fibers are treated in a narrow gap between rotating plates. The process is energy consuming and much of the electrical energy supplied to the refiner is transferred to the fiber material through friction forces. Even though the importance of friction has been discussed frequently, little has been proven due to the complexity of the process and the process conditions. This paper presents a new apparatus for studying the frictional properties of wood, in lab-scale, under conditions which are aimed at simulating those prevalent in a chip refiner. Tests can be performed in saturated steam at high temperature/pressure with sliding velocities as high as 150 m/s. Studies at room temperature showed that the friction coefficient between spruce wood and smooth steel increased with the moisture content of the specimens. Impregnation by wood extractives lowered the friction coefficient for dry wood sliding at high speed. When tests were performed in a saturated steam environment, the frictional properties were affected and varied by the temperature of the surroundings. This is interesting in view of the fact that the friction coefficient is usually considered constant in analytical and numerical models of the process.  相似文献   

14.
The friction and wear characteristics of combinations of silicon nitride, alumina and AISI 52100 steel in the presence of mineral oil containing anti-wear, dispersant and detergent additives have been investigated in a tri-pin-on-disc machine. The tests were carried out at a nominal temperature of 100°C for a range of sliding speeds, loads and total sliding distances. In Part II of this two-part paper a comparison will be made between the tribological performance of these sliding pairs of materials in mineral oil and ester based lubricant environments. The results of the investigation showed that the alumina performed relatively poorly under these test conditions, whereas silicon nitride showed good potential as an improved wear resisting material compared with 52100 steel. Wear factors of the order of 10−10 mm3/Nm were deduced for the alumina, while values as low as 10−11 mm3/Nm were typical of the silicon nitride sliding against 52100 steel discs. The alumina pins wore by a process of brittle fracture at the surface, whereas the silicon nitride pins wore primarily by a tribochemical polishing mechanism. The rate of tribo-chemical wear was found to be proportional to the nominal contact area.  相似文献   

15.
We report fabrication of Ti metal nanodot arrays by scanning probe microscopic indentation. A thin poly-methylmethacrylate (PMMA) layer was spin-coated on Si substrates with thickness of 70 nm. Nanometer-size pore arrays were formed by indenting the PMMA layer using a cantilever of a scanning probe microscope. Protuberances with irregular boundaries appeared during the indentation process. Control of approach and pulling-out speed during indentation was able to dispose of the protrusions. Ti metal films were deposited on the patterned PMMA layers by a radio-frequency sputtering method and subsequently lifted off to obtain metal nanodot arrays. The fabricated metal nanodot arrays have 200 nm of diameter and 500 nm of interdistance, which corresponds to a density of 4×108/cm2. Scanning probe-based measurement of current–voltage (I–V) behaviors for a single Ti metal nanodot showed asymmetric characteristics. Applying external bias is likely to induce oxidation of Ti metal, since the conductance decreased and volume change of the dots was observed. I–V behaviors of Ti metal nanodots by conventional e-beam lithography were also characterized for comparison.  相似文献   

16.
The progression of local cartilage surface damage toward early stage osteoarthritis (OA) likely depends on the severity of the damage and its impact on the local lubrication and stress distribution in the surrounding tissue. It is difficult to study the local responses using traditional methods; in situ microtribological methods are being pursued here as a means to elucidate the mechanical aspects of OA progression. While decades of research have been dedicated to the macrotribological properties of articular cartilage, the microscale response is unclear. An experimental study of healthy cartilage microtribology was undertaken to assess the physiological relevance of a microscale friction probe. Normal forces were on the order of 50 mN. Sliding speed varied from 0 to 5 mm/s, and two probes radii, 0.8 and 3.2 mm, were used in the study. In situ measurements of the indentation depth into the cartilage enabled calculations of contact area, effective elastic modulus, elastic and fluid normal force contributions, and the interfacial friction coefficient. This work resulted in the following findings: (1) at high sliding speed (V = 1–5 mm/s), the friction coefficient was low (μ = 0.025) and insensitive to probe radius (0.8–3.2 mm) despite the fourfold difference in the resulting contact areas; (2) the contact area was a strong function of the probe radius and sliding speed; (3) the friction coefficient was proportional to contact area when sliding speed varied from 0.05 to 5 mm/s; (4) the fluid load support was greater than 85% for all sliding conditions (0% fluid support when V = 0) and was insensitive to both probe radius and sliding speed. The findings were consistent with the adhesive theory of friction; as speed increased, increased effective hardness reduced the area of solid–solid contact which subsequently reduced the friction force. Where the severity of the sliding conditions dominates the wear and degradation of typical engineering tribomaterials, the results suggest that joint motion is actually beneficial for maintaining low matrix stresses, low contact areas, and effective lubrication for the fluid-saturated porous cartilage tissue. Further, the results demonstrated effective pressurization and lubrication beneath single asperity microscale contacts. With carefully designed experimental conditions, local friction probes can facilitate more fundamental studies of cartilage lubrication, friction and wear, and potentially add important insights into the mechanical mechanisms of OA.  相似文献   

17.
In this study, the application of response surface methodology (RSM) and central composite design (CCD) for modeling, optimization, and an analysis of the influences of dominant machining parameters on thrust force, surface roughness and burr height in the drilling of hybrid metal matrix composites produced through stir casting route. Experiments are carried out using Al 356-aluminum alloy reinforced with silicon carbide of size 25 μm and Mica of size 45 μm. Drilling test is carried out using carbide drill of 6 mm diameter. The design of experiment concept has been used to optimize the experimental conditions. The experimental data are collected based on a three-factor-three-level full central composite design. The multiple regression analysis using RSM is used to establish the input–output relationships of the process. The mathematical models are developed and tested for adequacy using analysis of variance and other adequacy measures using the developed models. The main and interaction effect of the input variables on the predicted responses are investigated. The predicted values and measured values are fairly close, which indicate that the developed models can be effectively used to predict the responses in the drilling of hybrid metal matrix composites. The optimized drilling process parameters have been obtained by numerical optimization using RSM by ensuring the minimum thrust force of 84 N, surface roughness of 1.67 μm, and the burr height of 0.16 mm. After the drilling experiments, a scanning electron microscope (SEM) is used to investigate the machined surface and tool wear.  相似文献   

18.
Fretting experiments were conducted on the (1 0 0) crystal (cubic) face of a single crystal Ni-base superalloy in two directions, 〈1 0 0〉 and 〈1 1 0〉, to study the effect of crystallographic orientation on the fretting response in both partial slip and gross slip regimes. The study involved point contacts using a tungsten carbide (WC) ball with radius 10 mm tested at room temperature. Ball indentation was used to determine secondary crystallographic orientations. Under sufficiently high normal force, the friction on the cubic face in the 〈1 1 0〉 direction was larger than in the 〈1 0 0〉 direction. This difference can be explained by the extent of plastic deformation in the surface layer and associated microstructure changes, both of which depend on the coupling between the crystallographic orientation and the cyclic deformation field.  相似文献   

19.
《Wear》2006,260(7-8):711-719
Amorphous SiCN ceramics were prepared in a laboratory scale as disk shaped specimens with 10 mm diameter and 0.3 mm thickness. The friction and wear behaviour was characterised in gross slip fretting tests under unlubricated conditions at room temperature against steel (100Cr6) and ceramic (Al2O3). Tests with a ball-on-disk contact were performed in laboratory air with different content of water vapour. The results show clearly that the relative humidity has a significant effect on friction and wear behaviour. All tests in dry air lead to higher friction and higher wear rate than in normal air. Improved friction and wear behaviour was observed with increasing pyrolysis temperature up to 1100 °C of the SiCN specimens. This is attributed to increasingly better mechanical properties and higher stiffness of the amorphous network due to the evaporation of gaseous organic species and the formation of free graphite like carbon.  相似文献   

20.
Some of the problems that occur during the welding process include the creation of coarse grains in the weld structure and the hardening of the weld region, which reduce the strength and impact resistance of the welded parts. One technique to improve the mechanical properties of weld is the application of mechanical vibration to the molten pool. In this article, the effect of vibrating the part during welding on the mechanical properties of steel plates has been investigated in the tungsten inert gas (TIG) welding process. The plate is made of stainless steel 304 with 2 mm in thickness. A filler material has also been used for welding so that the effect of vibration can be observed on the weld pool region. The experimental tests have been performed under different welding conditions with respect to voltage, current, welding speed, vibrations amplitude, and frequency. Then, the resultant mechanical properties of the tested parts were measured. Also, the microstructure obtained by applying the vibration has been examined. Based on these experimental results, the effect of mechanical vibration on mechanical properties of the weld was investigated. Moreover, considering the mechanical properties obtained from these experiments, the optimum values of amplitude, frequency, and welding speed were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号