首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale rotors in the paper and steel industry are called rolls. Rolls are reground at regular intervals and roundness measurements are made throughout the machining process. Measurement systems for roundness and diameter variation of large rolls (diameter <2000 mm) are available on the market, and generally use two to four sensors and a roundness measurement algorithm. These methods are intended to separate roundness of the rotor from its movement. The hybrid four-point method has improved accuracy, even for harmonic component amplitudes. For reliable measurement results, every measurement should be traceable with an estimation of measurement uncertainty. In this paper, the Monte-Carlo method is used for uncertainty evaluation of the harmonic components of the measured roundness profile under typical industrial conditions. According to the evaluation, the standard uncertainties for the harmonic amplitudes with the hybrid method are below 0.5 μm for the even harmonics and from 1.5 μm to 2.5 μm for the odd harmonics, when the standard uncertainty for the four probes is 0.3 μm each. The standard uncertainty for roundness deviation is 3.3 μm.  相似文献   

2.
In high accuracy radius of curvature (ROC) measurement, significant discrepancy may exist in results on the same optical surface obtained by different techniques. Metrological standard sphere is a potential solution to this problem. Mathematical models are built up to characterize the relationship between the ROC of standard spheres and the roundness error as well as the aperture angle. Equations for calculating the uncertainty of ROC are derived and tested on several ROC measuring methods. The reason for the inconsistency between results of different techniques is analyzed and solutions are proposed. A method is developed which can remarkably reduce the uncertainty of ROC. Experiments are carried out on a set of high quality spheres whose diameters are from 11 mm to 93 mm and roundness below 0.1 μm, measured by instruments with relative accuracy of 10−5–10−6, which are a length measuring machine, a profilometer and a homemade differential confocal system. Relative uncertainties of ROC are calculated and analyzed against several factors. Experimental results show good consistency with theoretical analysis. Approaches to trace the ROC to the metrological length standard area discussed.  相似文献   

3.
A modified measurement device to measure thermal conductivity of fluids using transient hot-wire technique has been designed, developed, tested and presented in this paper. The equipment is designed such that the thermal conductivity could be measured using both single wire sensor of different length and dual wire sensor. The sensor, which is also a heater, is a platinum micro-wire of 50 μm diameter. The influence of wire length on the measurement of thermal conductivity of fluids is tested using two single wires of length 50 mm and 100 mm. The thermal conductivity is also measured using a dual hot wire arrangement; which is achieved by placing the 100 mm and 50 mm wires in a Wheatstone bridge with the 100 mm wire as the sensor and 50 mm wire as a compensation wire. The apparatus requires a 100 ml of test fluid to perform the experiment. The testing temperature of the test fluid during the experimentation can be suitably varied by the choice of heat exchange fluid used in the apparatus. Water is chosen as testing fluids for primary standards. When compared to single wires, the thermal conductivity of the fluids measured is consistent with dual-wire method with an uncertainty of ±0.25%.  相似文献   

4.
The development of a new probing method to inspect the inner diameter of micro-scale holes is presented in this paper. This was accomplished by contact detection using acoustic emission with a Ø170 μm rotating wire probe tip. Contact is detected when the rotating probe approaches and impacts the hole’s inner surface. The effective diameter of the rotating probe is calibrated by using a high precision grade 0 Mitutoyo gauge block. The wire rotating probe used was fabricated with micro stainless steel wire and micro tubes. The probe’s effective diameter was compensated for in the measurement of the hole. The probe was used to measure the diameter and the roundness of micro-scale holes. Probes used in previous publications have different geometry than the probe in this paper and are used almost exclusively for external dimensions. Micro-scale holes of less than 1.0 mm in diameter and 10 mm in depth are successfully measured and the 3D profile is created accordingly. Also, the out-of-roundness values of each level spacing, 50 μm apart in height, are calculated.  相似文献   

5.
This paper deals with the development and calibration of a single degree-of-freedom probe that is capable of regulating an input position and measuring force or applying a constant input force and measuring deflection. Such a probe is useful in making sensitive measurements on thin films, nano- and microstructures, and fluids. The probe is actuated by an electrostatic comb drive with an integrated capacitive sensor. COTS electronics and a capacitance-to-voltage IC are used to develop a closed-loop controller for the system, capable of regulating position over a range of about 40 μm to within a 5 nm resolution and controlling forces up to 300 μN with a resolution of 25 nN. The design and fabrication of the probe are discussed. The calibration of the device is performed using multiple methods to cross check each other. The use of the probe is demonstrated in the measurement of surface tension and probing the response of a soft polymer to small forces.  相似文献   

6.
Due to their recent introduction there are few studies of retrieved resurfacing hip prostheses. Nine such components associated with groin pain in patients, and five associated with early fracture of the femur, were obtained and analysed using a roundness measuring machine. While the ‘fracture’ components showed no more than 3 μm out of roundness, components associated with groin pain showed between 15 and 92 μm out of roundness values. These latter results indicate wear and correlated with high metal ion levels in these patients, therefore the groin pain was likely associated with an adverse reaction to excessive metal wear debris.  相似文献   

7.
The growing popularity of usage of touch probes for CNC machine tools has created an increasing requirement to test their accuracy. Indirect methods used until now, based on the measurement of a material gauge with a machine tool equipped with a probe, made the separation of machine tool errors from probe errors impossible. In this article, a new method of testing the probe accuracy, which does not employ a machine tool, is presented. This method employs a moving master artefact in the form of an inner hemisphere. The standard uncertainty of the determination of triggering radius variation is 0.35 μm.  相似文献   

8.
Today, with the development of microsystem technologies, demands for three-dimensional (3D) metrologies for microsystem components have increased. High-accuracy micro-coordinate measuring machines (micro-CMMs) have been developed to satisfy these demands. A high-precision micro-CMM (M-CMM) is currently under development at the National Metrology Institute of Japan in the National Institute of Advanced Industrial Science and Technology (AIST), in collaboration with the University of Tokyo. The moving volume of the M-CMM is 160 mm × 160 mm × 100 mm (XYZ), and our aim is to achieve 50-nm measurement uncertainty with a measuring volume of 30 mm × 30 mm × 10 mm (XYZ). The M-CMM configuration comprises three main parts: a cross XY-axis, a separate Z-axis, and a changeable probe unit. We have designed a multi-probe measurement system to evaluate the motion accuracy of each stage of the M-CMM. In the measurement system, one autocollimator measures the yaw error of the moving stage, while two laser interferometers simultaneously probe the surface of a reference bar mirror that is fixed on top of an XY linear stage. The straightness motion error and the reference bar mirror profile are reconstructed by the application of simultaneous linear equations and least-squares methods. In this paper, we have discussed the simulation results of the uncertainty value of the multi-probe measurement method using different intervals and standard deviations of the laser interferometers. We also conducted pre-experiments of the multi-probe measurement method for evaluating the motion errors of the XY linear stage based on a stepper motor system. The results from the pre-experiment verify that the multi-probe measurement method performs the yaw and straightness motion error measurement extremely well. Comparisons with the simulation results demonstrate that the multi-probe measurement method can also measure the reference bar mirror profile with a small standard deviation of 10 nm.  相似文献   

9.
High-accuracy mirrors and lenses with large dimensions are widely used in huge telescopes and other industrial fields. Interferometers are widely used to measure near flat surfaces and spherical optical surfaces because of their high accuracy and high efficiency. Scanning deflectometry is also used for measuring optical near flat surfaces with sub-nanometer uncertainty. However, for measuring an aspheric surface with a large departure from a perfect spherical surface, both of these methods are difficult to use. The key problem for scanning deflectometry is that high-accuracy autocollimators usually have a limited measuring range less than 1000″, so it cannot be used for measuring surfaces having a large slope. We have proposed a new method for measuring large aspheric surfaces with large slopes based on a scanning deflectometry method in which rotatable devices are used to enlarge the measuring range of the autocollimator. We also proposed a method to connect the angle data which is cut by the rotation of the rotatable devices. An analysis of uncertainty propagation in our proposed method was done. The result showed that when measuring a large aspheric surface with a diameter over 300 mm and a slope of 10 arc-deg, the uncertainty was less than 10 nm. For the verification of our proposed method, experimental devices were set up. A spherical optical mirror with a diameter of 35 mm and curvature radius of 5000 mm was measured. The measuring range of the autocollimator was successfully enlarged by our proposed method. Experimental results showed that the average standard deviation of 10 times measurement was about 20 nm.  相似文献   

10.
A shear mode micro-probing system was constructed for gap measurement of a precision slot die coater with a nominal gap width of 90 μm and a length of 200 mm. A glass micro-stylus with a nominal tip ball diameter of 52.6 μm was oscillated by a tuning fork quartz crystal resonator with its oscillation direction parallel to the measurement surfaces. An on-line qualification setup was established to compensate for the influences of the uncertainty sources, including the water layers on the measurement surfaces. The measurement uncertainty of the measured gap width was estimated to be less than 100 nm.  相似文献   

11.
In this paper, a novel type compact five-coordinate measuring machine with laser and CCD compound probe, which consists of three translational axes and two rotational axes, was designed and built. The compound probe is employed and the measurement mathematical model is established. An improved genetic algorithm is applied to solve the unknown parameters of the model. Hence, by means of this model, the 3D surface data of the tested object can be transformed into the same reference coordinate system. Quasi-Newton method is introduced and in charge of processing tested surface data. Based on the variety of tested object, such as plane, sphere, cylinder etc. the corresponding optimization objective function and initial condition are set properly to achieve the solution of characteristic parameters. Especially, in this work, an evaluation function method based on the “roundness” information of the through-hole image is proposed to detect the diameter and spatial location of hole, which particularly fits for inspecting those thin and small through-holes drilled at the soft and easy-deformed objects. Consequently, the measurement puzzle of spatial angle between two thin and through-holes is easily solved. The experiments show that the measurement repeatability of this machine is within 1.6 μm. Meanwhile, the experiments illustrate the validity and feasibility for through-holes measurement.  相似文献   

12.
This paper describes evaluation of a method of measuring the straightness of motion of machine tool axes using a taut wire and an optical sensor head mounted at the tool point location. In contrast to commonly used taut wire instruments, straightedges or laser-based methods, this solution combines low cost, simplicity of setup and automated data capture while achieving state of the art accuracy suitable for application on precision machine tools. A series of tests are discussed which examine the performance of the new sensing head and different wires which highlight the suitability of the taut wire properties as a straightness reference. Experimental results obtained on a production machine tool are provided with respect to the accuracy and repeatability of both the proposed taut wire system and a laser interferometer operated under the same conditions. The reference errors of wires made of different materials are compared and the wire catenary is separated from the measurement results. The uncertainty budget for taut wire and laser systems is presented and expanded uncertainty of 4 μm obtained for both. During the experiment, the method showed excellent repeatability with two standard deviations of 1.5 μm over a measuring range of 1.5 m; this performance matches that of a commercial laser interferometer-based straightness reference to within 0.1 μm.  相似文献   

13.
In this study, a system for measuring small-sized holes with a 17–21 mm diameter and 1000 mm length was constructed. The system comprises a laser interferometer to detect hole accuracy, a probe connected to a measurement bar, and an optical apparatus for detecting the probe attitude (position and inclination). The probe was supported by supporting pads. A steel workpiece with 18 -mm diameter and 800 mm length was used for the performance test. During the experiment, errors were found in terms of hole deviation and roundness profile. Further experiments, using new experimental apparatus and analysis, revealed the causes of errors: electrical noise that increased with time, two periodic stylus swings in the longitudinal direction of the hole per rotation of the measurement unit, and the excessive spring force pushing the tip of the stylus, causing a large frictional force with the hole wall, etc. If these errors are corrected, high accuracy in the measurement of hole deviation and roundness can be achieved.  相似文献   

14.
A pinhole orifice with a known conductance can be used as a secondary flow standard. Commercially available laser-drilled pinhole orifices with diameters ranging from 1.0 μm to 50 μm can have molecular-flow conductances ranging from about 0.1 μL/s to 200 μL/s for N2 at 23 °C. Gas flows of 10−11–10−6 mol/s can easily be produced by applying an upstream pressure in the range of 1–105 Pa. Accurate measurements of the orifice conductance as a function of pressure are required to use the pinhole orifice as a basis of a flowmeter. We use a constant-pressure flowmeter to make accurate measurements of the conductance of a 20 μm orifice as a function of pressure for gas flows of Ar and N2 into vacuum. We present results of these conductance measurements for an orifice with a nominal diameter of 20 μm. The N2 conductance of this orifice ranged from 30 μL/s to 60 μL/s over the range of pressures investigated, and was measured with an uncertainty of better than 0.2% (k = 2) for upstream pressures greater than 10 Pa.  相似文献   

15.
To solve the problem of calibrating the radius of a ball indenter in a hardness tester, a laser confocal radius measurement and calibration method for the ball indenter is proposed without separating the ball from the body of the indenter. The laser confocal radius measurement and calibration method uses the maximum of the confocal axial intensity curve to precisely identify the cat’s eye and confocal position of the test ball indenter. The distance between these two positions is then measured to achieve high-precision radius measurement. The theoretical analyses and experimental results indicate that the radius measurement uncertainty of the ball indenter with a diameter of 1.5875 mm is within 0.12 μm.  相似文献   

16.
Many torque tools, such as torque wrenches and torque screwdrivers, as well as torque measuring devices (TMDs) with a rated capacity of less than 5 N·m are being widely used in industry. Thus, a small-rated-capacity torque standard has to be established as soon as possible. A 10 N·m dead weight torque standard machine (10 N·m DWTSM) has been under development since 2006 at the National Metrology Institute of Japan (NMIJ), part of the National Institute of Advanced Industrial Science and Technology (AIST). Characteristically, the main parts of the moment arm are made of low thermal-expansion alloy (Super INVAR), and an aerostatic bearing is employed as the fulcrum supporting the moment arm to minimize rotational friction. The moment arm was evaluated with regard to the coefficient of thermal expansion (CTE), the lengths measured by a 3D coordinate measurement machine (CMM), and temperature correction realized by measuring the moment arm temperature. The sensitivity limit of the fulcrum in the 10 N·m DWTSM was also estimated. As a result, the apparent overall CTE of the moment arm was 1.06 × 10−6 K−1, and the expanded uncertainty was 2.24 × 10−9 K−1 (k = 2). The results of the CMM measurement were a right-hand side length of 510.2773 mm and a left-hand side length of 510.2657 mm, with a relative expanded uncertainty of 4.0 × 10−5 (k = 2). The moment arm temperature increased by approximately 0.6 K during the ordinary calibration process. The corresponding change in the lengths of the moment arm was estimated to be approximately 0.3 μm, which is considered to be sufficiently small compared with the expanded uncertainty of the lengths of the moment arm. The fulcrum of the 10 N·m DWTSM was found to have sufficient sensitivity under three conditions: without the weight loading components, with the weight loading components, and with loaded weights. In particular, the fulcrum had sufficient sensitivity of at least 0.5 mg when weights of 100 g were loaded on both 5th stages in the weight loading components to generate a radial load equivalent to 1 N·m.  相似文献   

17.
A nano-fretting test technique has been recently developed to enable the in situ study of wear at the micro- and nano-scale. It has been used to study the small scale wear of Si(1 0 0) using a 4.6 μm spheroconical indenter as test probe over the applied load range 30-300 mN. Contact damage assessment by in situ measurements of probe displacement were supplemented by post-test SEM imaging and wear scar analysis by confocal microscopy. The wear behaviour was dependent on the rate of initial loading. When the load was applied abruptly (<0.3 s), radial and lateral cracking and material removal was observed and large displacement jumps (pop-ins) were observed during the subsequent 1000 s constant load nano-fretting test. The crack morphology was very similar to that in repetitive nano-impact tests and conventional nanoindentation at higher applied load with the same probe. In contrast, when the load was applied more slowly (10 s) radial cracking was not observed and there was a distinct threshold load (∼100 mN) marking the transition to a more severe wear mode with extensive lateral cracking and material removal.  相似文献   

18.
In order to improve the performance and applicability of atom probe tomography, the application of microelectrodes has been suggested and is realized in modern commercial instruments. In contrast to the original proposition by Nishikawa, in practical realization the down scaling of the microelectrode is limited to about 10 μm due to the requirements of a stable measurement. In this work, the field enhancement by electrodes of this size was measured in the FIM mode and compared to finite element calculations of the electric field. The experimental data reveal considerable scattering between individual microelectrodes and specimen tips, but on the average the predictions by the finite element calculation are confirmed. Even a microelectrode of 50 μm diameter yields a reasonable field enhancement close to a factor of two.  相似文献   

19.
A magnetic microelectromechanical systems (MEMS) actuator using a small permanent neodymium-magnet surrounded by magnetic fluid (MF) was developed and characterized. The magnet is enclosed in a cavity sandwiched by two identical thin PET-sheet diaphragms and is able to move smoothly due to the MF. The diaphragms deflect when an external magnetic force is applied to the magnet. This structure was adopted to prevent the diaphragms from being stiffened by attaching or fabricating a magnetic layer on the diaphragm surface and to secure the necessary volume of magnetic material. The magnets are 2–4 mm in diameter and the cavity is 5 mm in diameter and 1 mm in depth. The diaphragms are 20 μm in thickness. Experiments showed the displacement amplitude generated at the diaphragm center was in the range of 10–50 μm for attractive and repulsive magnetic force when magnetic flux density of 4–30 mT was applied. The response was within about 1 s. The deflection profile of the diaphragms can also be varied by changing the magnet position.  相似文献   

20.
Fiber deflection probe for small hole metrology   总被引:2,自引:0,他引:2  
This paper presents the development of a new probing method for coordinate measuring machines (CMM) to inspect the diameter and form of small holes. The technique, referred to as fiber deflection probing (FDP), can be used for holes of approximately 100 μm nominal diameter. The expanded uncertainty obtained using this method is 0.07 μm (k = 2) on diameter. The probing system consists of a transversely illuminated fiber (with a ball mounted on the end) whose shadows are imaged using a camera. We can infer the deflection of the probe from the motion of the image seen by the camera, and we infer the position of the measured surface by adding the fiber deflection along x- and y-directions to the machine scale readings. The advantage of this technique is the large aspect ratio attainable (5 mm deep for a 100 μm diameter hole). Also, by utilizing the fiber as a cylindrical lens, we obtain sharp crisp images of the fiber position, thus enabling high resolution for measured probe deflection. Another potential advantage of the probe is that it exerts an exceptionally low force (ranging from a few micronewtons down to hundreds of nanonewtons). Furthermore, the probe is relatively robust, capable of surviving more than 1 mm over-travel, and the probe should be inexpensive to replace if it is broken. In this paper, we describe the measurement principle and provide an analysis of the imaging process. Subsequently, we discuss data obtained from characterization and validation experiments. Finally, we demonstrate the utility of this technique for small hole metrology by measuring the internal geometry of a 129 μm diameter fiber ferrule and conclude with an uncertainty budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号