首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
新建海堤下盾构隧道施工技术措施及监控   总被引:1,自引:0,他引:1       下载免费PDF全文
网格式盾构法施工隧道工程由于其快速、经济常用于电厂建设中的进排水隧道工程中。但网格式盾构施工对土体扰动较大,对海堤的变形和稳定均造成较大的影响;同时软土地区的海堤在自身荷载作用下沉降尚未完成,尤其是下卧层沉降未稳定,导致盾构隧道产生一定的纵向不均匀变形;盾构隧道施工和海堤相互影响成为亟待解决的关键问题。以大唐宁德电厂穿越新建海堤的进排水盾构隧道工程为例,在有限元数值计算分析基础上,提出了切实可行的加固措施,指导设计和施工;同时,对隧道施工过程中原位测试数据作了详细的分析;最后,给出了盾构在穿越海堤阶段的推荐施工速度、施工中建议采用的注浆和预起拱等加固措施以及隧道的变形、孔压等方面的一些规律性结论,为实际工程中类似的穿堤盾构隧道设计与施工控制提供依据。  相似文献   

2.
隧道下穿江河是盾构地铁隧道建设中的技术难点之一,因设计或施工不当引起的变形甚至坍塌,将会导致巨大的经济损失和不良的社会影响。文中以杭州地铁8号线文桥区间风井至桥头堡站区间工程为背景,结合隧道一次性下穿越钱塘江的工程特点,采用有限元软件PLAXIS 3D对该标段的开挖进行数值模拟,研究泥水盾构下穿钱塘江施工其隧道管片的变形机理。通过对开挖过程中不同水头高度变化下的管片上浮情况进行对比分析,得出水头变化-隧道管片上浮的关系。利用建立的有限元模型对泥水盾构穿越不同土层进行计算分析,对比各种工况下管片的上浮情况,得出泥水盾构穿越不同土层时管片的上浮规律。利用建立的有限元模型对泥水盾构中盾尾注浆参数调整进行计算分析,得出注浆参数对于管片上浮情况的影响规律,并进一步探究注浆参数调整对于盾构穿越不同土层时管片上浮的影响情况。  相似文献   

3.
由于城市高楼密集,地铁隧道网络发达,建筑物桩基、市政管线和既有隧道等地下构筑物对新建隧道空间形成较大限制,因此施工盾构往往不可避免地叠交穿越绕行既有构筑物。尤其是上下叠交的隧道穿越存在着重大施工风险,对既有隧道的安全运营构成极大安全隐患。结合上海轨道交通工程实践,采用简化理论方法、三维有限元数值模拟方法以及现场监测方法,揭示软土城区土压平衡盾构机上下交叠穿越地铁隧道的变形规律,提出上下交叠穿越地铁隧道的盾构施工参数设定规律以及安全控制技术措施。其中简化理论方法基于Winkler地基模型,得到盾构上下交叠穿越引起的既有隧道纵向沉降的计算表达式;三维数值模拟方法优化施工方法和盾构掘进参数,分析盾构隧道以较大斜交角度上下叠交施工穿越的实际工况;现场监测方法提供土压平衡盾构机上下交叠穿越地铁隧道的变形数据以及切口土压力、同步注浆、推进速度、管片拼装高程以及刀盘扭矩等施工参数的设定规律。研究成果可为合理制定城市地铁隧道交叠穿越运营隧道的保护措施提供一定理论依据,也可为其他类似多线叠交盾构隧道穿越工程提供一定的施工借鉴和参考。  相似文献   

4.
新建地铁盾构隧道穿越施工,容易导致被穿越运营隧道的不均匀沉降变形,从而引起道床与管片脱开、隧道纵缝张开、隧道渗漏水等情况。运营隧道的过大差异沉降,如不及时控制,任其发展,将严重影响地铁的运营安全。通过上海轨道交通2号线区间隧道由于新建11号线盾构施工引起的差异沉降注浆控制研究,探讨软土地区地铁隧道结构沉降变形的控制措施,对其施工措施和注浆效果的进一步分析总结,可以为今后其他线路区间隧道结构整治提供参考。  相似文献   

5.
为了研究适应灰岩地区的地铁隧道盾构管片结构优化,以贵阳地铁3号线一期工程高新路口站—师范学院站盾构区间为工程背景,通过综合选取围岩参数,对管片参数进行优化,并创新性地提出防排水结构的优化方案,分析管片的变形、受力及内力,优化管片的厚度,总结并优化管片制作材料,提高地铁隧道施工效率和质量,为后续类似工程提供经验。  相似文献   

6.
研究既有隧道在新建隧道穿越时产生的响应,提出一种能准确预测既有隧道位移的计算方法。采用目前国内较为先进的转动错台模型,在考虑施工因素的附加荷载作用下,运用最小势能原理对既有盾构隧道在新建隧道穿越时的结构变形进行了分析预测。并分别选取了3个工程实例对新建隧道在不同穿越工况下本文方法的预测准确性进行了验证。研究结果表明:本文方法计算值与实测值较为吻合,能计算出既有隧道的竖向位移、环间的错台量、转角和剪切力,进而判断既有隧道结构的安全状态;既有隧道发生沉降时管片以错台变形为主,转动变形占比较小(约30%)。  相似文献   

7.
文章以深圳地铁10号线福田口岸站—福民站区间盾构始发段施工工程为依托,研究设计袖阀管注浆加固方案下,新建地铁隧道在盾构始发处正交上跨穿越既有地铁线路施工的力学行为。通过数值分析,得到以下结论:在设计方案下,新建盾构隧道施工对既有隧道管片受力影响有限;新建隧道开挖后的土体卸载作用会引起下方既有隧道产生轻微隆起;在设计方案下进行上跨施工,可以保证既有地铁隧道的受力和变形满足安全运营的要求。  相似文献   

8.
探究新建隧道上穿引起既有盾构隧道的纵向变形规律,对进一步评估并减少新建隧道施工对既有盾构隧道的不利影响具有重要的现实意义。现有解析方法多是将既有盾构隧道简化为搁置于线弹性地基上的等效连续梁,不能考虑隧道管片环间接头的弱化和土体非线性变形特征。首先,引入接头非连续盾构隧道模型和非线性Pasternak地基模型来考虑隧道管片环间接头的弱化及隧道–地基的非线性作用,推导得到新建隧道上穿开挖下既有盾构隧道纵向变形控制微分方程;其次通过有限差分法和牛顿迭代法求解得到既有盾构隧道纵向变形的数值解答;最后,对2个工程案例及常用等效连续梁模型对比验证。研究结果表明:等效连续梁模型计算得到的隧道纵向变形表现为连续特征,而所提方法考虑了隧道接头弱化作用,得到的隧道纵向变形表现为非连续特征,隧道纵向位移和弯矩在接头处会发生突变。通过参数分析可知,增加新旧隧道间净距可有效减少既有盾构隧道的隆起变形、弯矩和环间接头张开量;随着管片长度增加,既有盾构隧道的隆起位移略有减少,但是管片间环间张开量及弯矩随之增大;增加环间接头的刚度可有效减少既有盾构隧道的竖向位移和张开量,但是会导致隧道弯矩增加。  相似文献   

9.
通过兰州地铁2号线盾构隧道穿越建筑物施工过程的三维数值模拟,分析地铁隧道施工对地层扰动出现的上部建筑物沉降变形以及盾构隧道管片结构受力安全。研究结果对指导工程设计和施工具有十分重要的意义,也可为类似工程提供参考。  相似文献   

10.
基于杭州市地铁8号线盾构隧道某区间衬砌结构工程,采用有限元法研究了管片接头刚度对盾构隧道衬砌结构应力与变形的影响。研究结果表明:地表最大位移值随着管片接头刚度折减系数的增加而减小;盾构隧道衬砌结构内、外环顶部的环向位移与拱顶、拱底和拱腰处的环向应力均随着管片接头刚度折减系数的增加而增大;管片接头刚度对盾构隧道衬砌结构变形和地表位移均有较大影响,可采用提高管片接头刚度的方法减小盾构隧道衬砌结构变形,并采用注浆的方法抬升地表,进而降低地层损失率。该研究成果可为类似工程提供参考。  相似文献   

11.
 盾构隧道横断面收敛变形是评价隧道结构性态的重要指标。由预制管片拼装而成的盾构隧道,接头刚度显著低于管片刚度,因此,其横断面变形主要集中在接头张开及管片转动部位。针对盾构隧道横断面变形特点,提出考虑分布式光纤传感技术空间分辨率的点式固定方法,测量相邻管片接头两侧的相对位移。运用几何学原理,对管片接头张开、管片转动及隧道变形进行分析。通过2组不同轴力下的盾构隧道接头室内原型试验验证该方法,结果表明该方法可以有效感知盾构隧道横断面变形。采用该方法长距离布设光纤,可形成盾构隧道变形感知神经网络,提高监测密度,实现长距离、高密度、高精度、低成本的盾构隧道变形健康监测,从而保证地铁隧道的运营安全。  相似文献   

12.
盾构隧道周围的水土压力有投影表示法与径向表示法,两种表示方法的比较分析表明:水压力宜采用径向表示法,当径向表示法转换为投影表示法时,任意点的投影荷载数值与径向表示法时的荷载数值完全相等;土压力宜采用竖向与水平的投影表示法。针对圆形盾构隧道周围的水土压力作用半径与盾构隧道横断面曲梁的中心半径不一致问题,对盾构隧道计算半径的取值方法进行了分析,结果表明:当隧道的计算半径取为外半径时,盾构隧道的内力与变形偏大;当隧道的计算半径取为中心半径时,盾构隧道的内力与变形偏小。从荷载作用效果的等效性角度,分别得到了盾构隧道计算半径不同取值方法对应的水土压力修正系数与曲梁刚度修正系数,并给出了不同荷载对应的盾构隧道计算半径的取值建议。  相似文献   

13.
在盾构隧道上方修建大型基坑时,如何防止基坑开挖卸荷引起隧道变位是一个工程难题。南京某基坑工程,采用旋喷桩加固地基,并在开挖中考虑软土的时空效应规律,减少了对其下方盾构隧道的影响,取得了良好的工程效果。  相似文献   

14.
盾构隧道施工对已建平行隧道变形和附加内力的影响研究   总被引:8,自引:0,他引:8  
以盾构隧道装配式衬砌结构为研究对象,引入各向刚度不等的连续材料模型,按变形等效原则对不连续的隧道结构横向和纵向的刚度分别进行了等效折减,采用室内相似模型试验和三维有限元数值分析相结合的手段,以广州地铁三号线大沥区间盾构隧道工程为背景,对新建隧道施工所引起的已建平行隧道纵向变位、纵向附加轴力和弯矩、横向变形、横向附加轴力和弯矩进行深入研究,探讨和揭示围岩条件,隧道净距,顶推力等因素对已建平行隧道的变形和附加内力分布变化规律的影响.研究结果表明,新建盾构隧道施工所引起的已建隧道的影响主要集中于邻近新建隧道侧的拱腰附近,在软弱地层保持一定的隧道净距是必要的,盾构顶推力需控制在一定范围内,具体视围岩、净距以及可能造成的位移、相对变形和附加内力情况而定.  相似文献   

15.
通过离心模型试验模拟平行盾构隧道近接开挖施工,研究了盾构隧道近接开挖对既有隧道结构内力、管片变形和地表沉降的变化规律。结果表明:1隧道开挖引起地表沉降的大小与开挖的步骤有关,而沉降槽的范围基本不变;2既有隧道靠近新建隧道一侧受拉,这一侧弯矩出现负增量,侧向土压力也有一定的减小,且既有隧道直径水平向变大,而垂向直径基本不受影响;3由于土拱效应,新建隧道已完成开挖部分管片拱顶的土压力随开挖进程先减小后增大;4采用地层结构法可以准确模拟隧道开挖过程的隧道结构力学特性与变形规律。  相似文献   

16.
结合广州地铁某已运营的盾构区间隧道现状,通过采用三维Goodman单元来模拟管片已存在的裂缝,对盾构区间隧道已开裂管片的裂缝深度变化对管片结构造成的影响进行了分析,同时也对侧向土压力、地基弹簧系数以及地下水位等几种重要因素对管片受力变形特性的影响进行了评估。研究表明,随着裂缝深度的增加,管片砼的拉应力、压应力虽然达到最大值,但变化幅度并不大。但当裂缝接近径向贯通的时候,钢筋的拉应力值会大大增加,有可能超过允许值。同时,在盾构管片存在既有裂缝的情况下,盾构管片的最大拉应力值、水平和竖向收敛值、竖向沉降值均随侧向土压力系数、地基弹簧系数的减少而增大,同时随地下水位埋深的增大而增大。根据研究结果,对该区间隧道盾构隧道的裂缝等病害采取了针对性修复措施,目前无新的裂缝出现,总体处于稳定及安全的状态。  相似文献   

17.
基于连续介质大变形理论和损伤力学理论,将塑性损伤演化与渗流相互耦合的方法引入到Mohr-Coulomb准则,建立黏土岩弹塑性大变形渗流–应力耦合模型,以ABAQUS软件为平台对其进行二次开发。以比利时黏土岩核废料库工程为背景,在全面分析盾构施工影响围岩稳定性因素的基础上,建立反映施工质量的等代层模型,对不同施工质量时盾构掘进过程中围岩及开挖面的变形、孔隙压力及塑性区的演化规律进行数值模拟。计算结果表明,围岩变形在开挖面附近达到最大值,施工质量对围岩稳定性有明显的影响,施工质量越差,开挖扰动区的范围就越大,并且孔隙压力降低的幅度就越大。研究结果可为软岩隧道设计及施工提供参考。  相似文献   

18.
 当前TBM在深埋隧洞施工中的应用越来越多,由变形引起的TBM施工事故也越来越普遍,因此很有必要对变形引起的TBM施工事故进行风险分析。采用收敛–约束法并结合风险分析理论,考虑洞室的掌子面和护盾后方支护的效应,对围岩作用在护盾上的压力进行计算;同时,根据作用护盾上压力大小判断洞室变形对TBM施工的具体影响,把事故的后果分为5个等级,根据后果等级结合发生的概率提出TBM施工变形风险评价矩阵,然后结合现有的风险接受准则即可确定风险等级。最后,采用研究成果对南水北调西线某段双护盾TBM施工进行风险评估。  相似文献   

19.
软土地区盾构法隧道施工三维数值模拟   总被引:2,自引:0,他引:2  
本文采用三维有限元方法,考虑软土的固结作用和隧道开挖与周边建筑物变形的相互作用,对隧道施工的全过程进行数值模拟,分析盾构法隧道施工对周边建筑物的影响。数值计算结果表明:在考虑流固耦合的条件下,盾构法隧道开挖时3~4倍洞径范围内的土体变形可能会超过土体位移的规范规定值,施工中应加强该距离范围内的土体和周边建筑物的监测;盾构法仅对开挖掌子面处附近局部区域的孔隙水压力有影响,说明软土地区盾构法隧道施工对地下水的扰动很小;通过监测数据与计算值的对比分析可以得出,典型监测点的变形规律与监测规律相同,说明在工程条件相似的软土地区采用数值模拟对盾构法隧道施工进行预测和仿真分析是可行的,具有一定的工程参考价值。  相似文献   

20.
 在海床复杂的地质条件下,海底双连拱隧道与陆地连接的浅埋软岩段容易形成偏压,从而影响围岩的稳定性。采用三维弹塑性有限差分法对双连拱隧道进口偏压段管棚的预支护作用进行分析,并分析了不同管棚参数下的计算结果。研究的主要内容包括:(1) 计算了隧道在有管棚支护和无管棚支护条件下的拱顶下沉和塑性区分布;(2) 给出了管棚设计参数和优化参数下不同的变形和弯矩变化;(3) 分析了拱顶下沉和水平收敛的FEM计算结果和实际测量结果。 计算结果表明,管棚支护和注浆加固围岩能有效减小隧道周围由偏压引起的塑性区,软岩中双连拱隧道偏压段采用管棚支护是很必要的;偏压通常会使连拱隧道侧洞的应力状态不同从而造成围岩变形的不同,为了更有效地控制围岩变形在管棚支护的设计中应该采用不均衡设计;数值计算结果与实测结果的一致性进一步说明了管棚优化设计的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号