首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Thin films of BaZr0.25Ti0.75O3 in which Ba2 + is partially substituted by Ca2 + are prepared by a sol-gel method. Phases and dielectric properties of the films are studied.The crystal structure of BaZr0.25Ti0.75O3 is cubic and does not change with Ca substitution upto x = 0.25 in Ba1-xCaxZr0.25Ti0.75O3. A change from a normal to relaxor behavior is observed for x = 0.20 as indicated by a change in the frequency of dielectric maxima with temperature and other parameters.The dielectric constant and transition temperatures are found to increase with increasing Ca substitution. A tunabilty of 71%, much higher than reported in literature for this material, is observed for x = 0.1 i.e for Ba0.9Ca0.1Zr0.25Ti0.75O3.  相似文献   

2.
A new measuring method and analyzing procedure were proposed to determine the complex dielectric constant of materials with relatively high dielectric constant by a lumped impedance measurement using impedance analyzer. Samples used for the measurement were (Ba0.6Sr0.4)TiO3 (BST) and Ba(Zr0.25Ti0.75)O3 (BZT) ceramics. Micro planar electrodes were formed on the surface of samples by electron beam lithography followed by lift-off method. Complex admittances of these samples were measured up to 3 GHz at different temperatures. Electromagnetic simulations were performed for determining the relative dielectric constant and dielectric loss. The complex dielectric constant vs frequency curves of Ba(Zr0.25Ti0.75)O3 showed a broad dielectric relaxation, while that of (Ba0.6Sr0.4)TiO3 was almost flat up to 3 GHz on high-temperature side of T m at which dielectric constant shows maximum value. Dielectric dispersion properties were discussed from the viewpoint of diffuse phase transition in ferroelectrics.  相似文献   

3.
Electrical characteristics of Sr0.8-xBaxBi2.2Ta2-yZryO9 ferroelectric films grown on HfO2/Si wafers by sol–gel spin coating technique were investigated from the viewpoint of application as ferroelectric gates in metal-ferroelectric-insulator-semiconductor (MFIS) stacks. It was observed that the leakage current density level was 10-8 A/cm2 under 14?V for moderate doping ratio. Determined memory windows from C-V characteristics of Sr0.8Bi2.2Ta2O9 (SBT) and Sr0.8-xBaxBi2.2Ta2-yZryO9 (x?=?0.04, 0.08, 0.12 and y?=?0.1, 0.2, 0.3) are 0.59, 0.65, 0.75, and 0.86?V at gate sweeping bias of 5?V, respectively. Some part of electronic properties of Sr0.8-xBaxBi2.2Ta2-yZryO9 with the objective to enhance memory window up to 45?% were discussed. It was interpreted that defects which are formed in Ba and Zr modified SBT affected the electronic processes like leakage current, memory window and charge trapping.  相似文献   

4.
This article presents electrocaloric effect in (SrxBa1-x)Nb2O6 ceramics (where x = 0.25, 0.50 and 0.75) using an indirect approach based on Maxwell's relations. Here, we have calculated various parameters of electrocaloric effect like temperature change (ΔT), entropy change (ΔS) and heat carrying capacity (ΔQ) of material due to the change in polarization under two different electric fields of 30 kV/cm and 20 kV/cm. (SrxBa1-x)Nb2O6 ceramics is well known pyroelectric material, where by increasing Sr/Ba ratio the ferroelectric behavior turns towards relaxor behavior. While in terms of electrocaloric effect performance (temperature change ΔT) is increase as the Sr/Ba ratio increases. Additionally, maximum ΔT (0.30 K) was found for (SrxBa1-x)Nb2O6 ceramic having x=0.75 molar concentration under the electric fields of 30 kV/cm.  相似文献   

5.
The compositions in the system (Ba1−x Sr x )(Ti0.5Zr0.5)O3 with different Sr (x) content, were synthesized through solid oxide reaction route. The phase formation behaviors in the system were investigated by XRD. The room temperature dielectric properties of the compositions were investigated in the frequency range 10 Hz to 13 MHz. The solid solution system Ba1−x Sr x Ti0.5Zr0.5O3 remains as cubic perovskite up to x < 0.6 and transforms into the tetragonal structure above x > 0.6. Composition with x = 0.6 contains a mixture of cubic and tetragonal phases with broadened diffraction pattern. It is observed that the increasing of Sr substitution results in the decreasing of bulk density, average grain size and dielectric constants etc. in the composition system. The AC dielectric conductivity of the ceramics also decreases with the increase in Sr-substitution due to decrease in loss as well as grain size with that substitution.  相似文献   

6.
Ba0.6Sr0.4Ti1+yO3 (BST, y?=?0.1, 0.15, 0.2, 0.25, 0.3) thin films were fabricated on Pt-coated silicon substrates by modified sol-gel techniques. It was found that the tunability of BST thin films and dissipation factor decreased with the increase of Ti content. The multilayer structure of Ba0.6Sr0.4Ti1+yO3(200 nm)/Ba0.6Sr0.4TiO3(100 nm)/Ba0.6Sr0.4Ti1+yO3 (200 nm; y?=?0.1, 0.2, 0.25) was designed to enhance the tunability. Our results indicated that the modified composition and multilayer structure were beneficial to lowering the dielectric dissipation and enhancing the tunability simultaneously. The tunability of 26.7% and dielectric dissipation of 0.013 were achieved for modified BST thin films.  相似文献   

7.
The compositionally graded Ba(Zr x Ti1?x )O3 films with a compositional gradient from BaTiO3 to BaZr0.35Ti0.65O3 were fabricated on LNO-buffered Pt/Ti/SiO2/Si substrates by a sol-gel deposition method. In order to confirm the compositional gradient, a combination of X-ray Photoelectron Spectroscopy (XPS) and Ar ion etching was employed to produce the composition depth profile. Dielectric constant peaks, common to a ferroelectric transition, were not observed in the temperature range from ?50 to 100 °C, within which the dielectric constant showed negligible temperature dependence. The compositionally graded Ba(Zr x Ti1?x )O3 thin films with weak temperature dependence of tunability could be attractive materials for situations in which precise control of temperature would be either impossible or too expensive.  相似文献   

8.
Abstract

High permittivity (BaxSr1?x)Ti1+yO3+z(BST) thin films are being investigated for integration into charge storage dielectrics and electric-field tunable elements for high frequency devices. For the latter application, it is desirable to have BST capacitors with high tunability and low losses. Therefore, we investigated the use of multilayer BST thin films consisting of very low dielectric loss BST/electrode interfacial layers ((Ba+Sr)/Ti = 0.73) sandwiching a high tunability, high permittivity primary BST layer ((Ba+Sr)/Ti = 0.9). BST capacitors with multiple layers of controlled composition can be effectively produced insitu by magnetron sputter deposition, using a single stoichiometric target and controlling the layer composition by changing the total process gas (Ar+O<2) pressure. The layered BST film capacitors exhibit simultaneous low loss (tan Δ = 0.005), high tunability (76%), high charge storage energy density (34 J/cm3), low leakage, and high dielectric breakdown (>2.8 MV/cm).  相似文献   

9.
The phase formation behavior and room temperature dielectric properties of bulk perovskite solid solution composition (Ba0.5Sr0.5)(Ti1 − x Zr x )O3 have been investigated. The samples with different Zr-content were prepared through solid state reaction. The XRD investigation showed that Zr+4 is systematically dissolved in Ba0.5Sr0.5TiO3 lattice up to about 60 atm.% substitution, having cubic Pm3m structure. Eighty atom percent Zr substituted composition showed to contain a cubic phase similar to that of x = 0.6 composition and a tetragonal (I4/mcm) phase. That is the solid solution breaks around at 80 atm.% Zr substitutions. Ba0.5Sr0.5ZrO3 was having orthorhombic Imma structure. Decrease in grain sizes were observed with increase in Zr content. The permittivity of the ceramics decreased with the increase in Zr substitution. The frequency dependency of dielectric loss in the frequency range 10 Hz to 10 MHz, were improved with Zr substitution in the ceramics. The room temperature ac and dc conductivity also decreased significantly with the increase in Zr-content.  相似文献   

10.
Abstract

In order to gain insight into the degradation mechanisms associated with ferroelectric thin films, such as fatigue and imprint, an understanding of the defect chemistry and transport properties of the material is needed. In this study several complimentary techniques have been used to either measure or calculate indirectly the various thermodynamic parameters governing defect formation and transport in Pb(Zr1/2Ti1/2)O3, (PZT). By combining the results of DC equilibrium conductivity, thermoelectric power and the sealed cell techniques, “constant composition oxygen activity” and “constant composition conductivity,” values for the oxidation enthalpy (ΔHox), hole trapping energy (E A) and the enthalpy of motion for holes (ΔE A) have been determined to be ?0.49 eV, ≤0.9 eV and ≥0.1 eV, respectively. From these results, it is apparent that PZT is an oxygen excess p-type semiconductor in the experimental regime of 500°–700°C and P(O2) ≥ 10?4 atm. Furthermore, the results indicate that there is a significant concentration of trapped holes at high temperatures and hole conduction appears to be an activated process (i.e. small polaron conduction).  相似文献   

11.
The effects of Mn-doping on TSDC (Thermally Stimulated Depolarization Current) and electrical degradation of BaTiO3 have been investigated. TSDCs of un-doped BaTiO3 and Ba(Ti1−x Mnx)O3−δ exhibited the three sharp TSDC peaks around phase transition temperatures. TSDC of Ba(Ti0.995Mg0.005)O2.995 increased gradually from 50C and this anomalous depolarization current kept going up well above the Curie temperature (∼130C). TSDCs of un-doped BaTiO3 and Ba(Ti0.995Mn0.005)O3−δ decreased in the temperature range above the Curie point, whereas a slight increase in TSDC was confirmed at the specimen of Ba(Ti0.99Mn0.01)O3−δ. TSDCs of Ba(Ti0.995−y Mg0.005Mny)O3−δ (y = 0.005, 0.01) were lower than that of Ba(Ti0.995Mg0.005)O2.995.  相似文献   

12.
(Pb,Ba)(Zr,Ti)O3 is a relaxor ferroelectric material. Dielectric and ferroelectric properties of (Pb1-x Ba x )(Zr0.70Ti0.30)O3 ceramics have been investigated for compositions varying in the range of 0.20?≤?x?≤?0.30. Reagent grade PbO, ZrO2, TiO2 and BaCO3 raw powders were used, ceramics were fabricated by convenient solid state reaction. The experimental results show that the substitution of Ba for Pb can enhance the ferroelectric relaxor characteristics. With the Ba content increasing, the electric hysteresis was narrowed and the polarization was reduced. Meanwhile the temperature T m that corresponding to the maximal dielectric constant was decreased. It has also been found that the hydrostatic pressure may cause the phase transition more diffuse and move T m to higher temperature.  相似文献   

13.
Microwave synthesis of nano-sized BaTiO3 and decrystallized titania, and microwave sintering of electroceramics including BaTiO3, Ba(Zn1/3Ta2/3)O3 (BZT), lead zirconate–titanate (i.e. Pb(Zr x Ti1?x )O3, or PZT), etc., as well as multilayer ceramic capacitors based on X7R, C0G, and ferrite multilayer chip inductors are presented. The results indicate that microwave processing significantly accelerated synthesis and sintering kinetics. As a result, processing time can be saved up to 90%, with the product properties comparable to or better than that of the conventional products.  相似文献   

14.
The (1-x)Ba(Zr0.25Ti0.75)O3-xSr(Fe0.5Nb0.5)O3 or (1-x)BZT-xSFN ceramics have been fabricated via a solid-state reaction technique. All ceramics exhibit a pure phase perovskite with cubic symmetry. The addition of a small amount of SFN (x?=?0.1) produces an obvious change in dielectric behavior. Very high dielectric constants (εr?>?164,000 at 1 kHz and temperature?>?150°C) are observed and the value is obviously higher than dielectric constants for Ba(Zr0.25Ti0.75)O3 and Sr(Fe0.5Nb0.5)O3 ceramics. The ferroelectric measurement data suggests that the unmodified sample exhibited a ferroelectric behavior. However, a transformation from a ferroelectric to a relaxor-like behavior is noted with increasing x concentration. Impedance Spectroscopy (IS) analysis indicates that the presence of excellent dielectric constants is due to the heterogeneous conduction in the ceramics after adding SFN, which can be explained in terms of the Maxwell-Wagner polarization mechanism.  相似文献   

15.
BaTiO3 forms an extensive range of solid solutions with Nd2O3 by means of the double substitution mechanism: Ba + Ti 2Nd, as shown by both a phase diagram study and Rietveld refinement using powder neutron diffraction data. The solid solutions have the general formula Ba1-xTi1-xNd2xO3Odxd0.12 at 1300°C and 1300°C and O dxd at 1400°C. With increasing x, the symmetry changes from tetragonal to cubic at x 0.09. The sharp permittivity maximum at 127°C in stoichiometric BaTiO3 broadens very rapidly with increasing x and gradually moves to lower temperatures: this appears to be because, with substitution of Nd onto Ti sites, formation of the ferroelectric domains is increasingly difficult because of the presence of dipole-inactive Nd3+ ions on the Ti sites.  相似文献   

16.
Dielectric and ferroelectric properties of Nb-doped Ba0.8Sr0.2TiO3 ceramics   总被引:1,自引:0,他引:1  
Ferroelectric and dielectric properties were investigated for Ba0.8Sr0.2Ti(1?5/4x)Nb x O3 ceramics with different Nb2O5 concentrations. The relations between the ceramic structures and those properties were discussed. The Ba0.8Sr0.2TiO3 doping with 0.01mol% Nb2O5 appears to have a strong ferroelectric effect and better dielectric properties. The max permittivity (? max) is up to 7,521.3 and Ba0.8Sr0.2Ti(1?5/4x)Nb x O3 ceramics has higher permittivity even at room temperature. The permittivity presents broadened curves at large temperature ranges, which suggests a non Curie–Weiss behavior near the transition temperature. The diffuse phase transition coefficient (δ) for Ba0.8Sr0.2Ti(1?5/4x)Nb x O3 doping with 0.01mol% Nb2O5 reaches 0.098, and its PE loop expresses a diffusing curve. The remanent polarization (2P r) and coercive field are 31.3 μC/cm2 and 10 kV/cm, respectively. The PE loop presents a diffusing curve, which is relative to the relaxor characteristic.  相似文献   

17.
Abstract

We have investigated the structural and electrical characteristics of (BaxSr1?x)Ti1+yO3+z (BST) thin films synthesized at 650°C on Pt/SiO2/Si substrates using a large area, vertical metalorganic chemical vapor deposition (MOCVD) reactor equipped with a liquid delivery system. Films with a Ba/Sr ratio of 70/30 were studied, as determined using X-ray fluorescence spectroscopy (XRF) and Rutherford backscattering spectrometry (RBS). A substantial reduction of the dielectric loss was achieved when annealing the entire capacitor structure in air at 700°C. Dielectric tunability as high as 2.3:1 was measured for BST capacitors with the currently optimized processing conditions.  相似文献   

18.
By the radio frequency (RF) magnetron sputtering methods, (Ba0.7Sr0.3)(Ti0.9Zr0.1)O3 (BSTZ) ferroelectric thin films were deposited on the Pt/Ti/SiO2/Si(100) substrates. The crystal structural and microstructure of these thin films were analyzed by means of the XRD, SEM, and AFM. Moreover, the dielectric characteristics were also investigated by the C-V and J-E analyses. The optimal deposition parameters for these BSTZ thin films were: RF power is 160 W, oxygen concentration is 25%, substrate temperature is 580°C, and chamber pressure is 0.075 mPa. Under these optimal deposition conditions, the (111) and (110) oriented polycrystalline of the BSTZ thin films grow easily. And under a bias voltage of 0.5 MV/cm, the dielectric constant and leakage current density of the BSTZ thin films are 191 and 3×10?8 A/cm2, respectively. In addition, under various measured temperatures (0 ~ 80°C) and frequencies (100 kHz ~ 1 MHz), all the dielectric constants remain almost unchanged. Compared to BSTZ thin films reported previously, in this study, the deposited thin films have the advantage of lower leakage current and hence are suitable for the applications of dynamic random access memory.  相似文献   

19.
ABSTRACT

Ba(Zr0.3Ti0.7)O3 (BZT) thin film was deposited on (LaAlO3)0.3(Sr2AlTaO6)0.35 [LSAT] (001) single crystal substrate using pulsed laser deposition. The X-ray diffraction pattern reveals an epitaxial growth of the film with a pure perovskite phase. The in-plane dielectric properties of the Ba(Zr0.3Ti0.7)O3 thin film was characterized as a function of frequency (1 kHz–500 MHz), temperature (125 K–373 K) and dc electric field (0–13.3 V/μm) using gold interdigital electrodes. The relative permittivity of the film exhibits strong dependence of the dc bias field over the whole frequency range. The relative permittivity has a high tunability of 73%–50% at room temperature in the frequency range of 1 kHz to 500 MHz, showing the potential of our Ba(Zr0.3Ti0.7)O3 thin film to be used in microwave devices.  相似文献   

20.
Abstract

Precise control of composition and microstructure is critical for the production of (BaxSr1?x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high frequency devices. Here we review recent results on composition-microstructure-electrical property relationships of polycrystalline BST films produced by magnetron sputter deposition, that are appropriate for microwave devices such as phase shifters. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST layers yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabili-ties suitable for device applications. These BST films were used to produce distributed-cir-cuit phase-shifters, using a discrete periodic loading of a coplanar waveguide with integrated BST varactors on high-resistivity silicon. Phase shifters yielding 30 degrees of phase shift per dB of insertion loss were demonstrated at 20GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号