首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

In this study, seedcoat cracking during heated air drying was investigated in five varieties of Minnesota grown soybeans. Effects of initial moisture contents, drying temperatures and time on cracking levels were evaluated. Digital image analysis (DIA) was employed to measure initial sizes and shapes of soybeans in order to evaluate the influence of physical properties of mature seeds on cracking frequency.

Seedcoat cracking rates increased significantly with increase in initial moisture content of the soybeans. drying temperature and time. Rapid water loss at higher initial moisture contents led to greater seedcoat cracking. Variety.growing location. and sizc of soybeans had significant influence on seedcoat cracking. Statistical analysis indicates that interactions between various factors had significant influence on seedcoat cracking.  相似文献   

2.
MRI techniques were developed and employed for non-destructive and noninvasive study of seedcoat cracking in low moisture soybean kernels during heated air drying. Proton density image and transient moisture distribution profile of a single soybean kernel can be obtained using MRI. These MRI techniques proved to be particularly useful for the continuous observation of initiation and propagation of seedcoat cracking during the entire period of drying process without interruption.

The proton density images of soybean kernels showed that seedcoat cracking was initiated perpendicular to the long axis of the kernel near the hilum. The transient moisture distribution profiles in soybean kernels during drying indicate that moisture gradient developed during drying was higher in the seedcoat than in the cotyledon. Drying temperature and initial average moisture content were positively correlated with the soyhean seedcoat crackig. The location of the  相似文献   

3.
ABSTRACT

MRI techniques were developed and employed for non-destructive and noninvasive study of seedcoat cracking in low moisture soybean kernels during heated air drying. Proton density image and transient moisture distribution profile of a single soybean kernel can be obtained using MRI. These MRI techniques proved to be particularly useful for the continuous observation of initiation and propagation of seedcoat cracking during the entire period of drying process without interruption.

The proton density images of soybean kernels showed that seedcoat cracking was initiated perpendicular to the long axis of the kernel near the hilum. The transient moisture distribution profiles in soybean kernels during drying indicate that moisture gradient developed during drying was higher in the seedcoat than in the cotyledon. Drying temperature and initial average moisture content were positively correlated with the soyhean seedcoat crackig. The location of the  相似文献   

4.
Urease activity, cracking, and breakage are important factors in considering the quality of raw soybean for feed meal industries. A two-dimensional spouted bed dryer was investigated to determine its capability for thermally inactivating the urease enzyme and maintaining its other qualities. The experimental results have shown that the drying kinetics of soybean in a two-dimensional spouted bed dryer are of the form described in the thin layer drying. The expression for the model parameter in Newton's law of cooling equation accounting for the moisture contents and inlet air temperatures was developed. The initial moisture content and inlet air temperature conditions cause cracks in the kernels. The strong collision between kernels and deflector because of high superficial velocity leads to high percentage of broken soybeans in the spout region. However, the velocity of 15.9 m/s can reduce the breakage below 5%. The inactivation of urease at low-to-moderate moisture content is suitably described by the first order kinetics. The modified Monod equation is applied when the moisture content is higher than 26% dry basis due to the inhibitory effect of water content on the inactivation rate. To complete urease inactivation and maintain protein quality, the temperatures of 150°C should be used.  相似文献   

5.
《Drying Technology》2013,31(9):1735-1757
Abstract

Urease activity, cracking, and breakage are important factors in considering the quality of raw soybean for feed meal industries. A two-dimensional spouted bed dryer was investigated to determine its capability for thermally inactivating the urease enzyme and maintaining its other qualities. The experimental results have shown that the drying kinetics of soybean in a two-dimensional spouted bed dryer are of the form described in the thin layer drying. The expression for the model parameter in Newton's law of cooling equation accounting for the moisture contents and inlet air temperatures was developed. The initial moisture content and inlet air temperature conditions cause cracks in the kernels. The strong collision between kernels and deflector because of high superficial velocity leads to high percentage of broken soybeans in the spout region. However, the velocity of 15.9 m/s can reduce the breakage below 5%. The inactivation of urease at low-to-moderate moisture content is suitably described by the first order kinetics. The modified Monod equation is applied when the moisture content is higher than 26% dry basis due to the inhibitory effect of water content on the inactivation rate. To complete urease inactivation and maintain protein quality, the temperatures of 150°C should be used.  相似文献   

6.
The most important factors for examining the quality of soybeans in the animal feed industry are moisture and urease inactivation. Mathematical models for soybean drying and urease inactivation using two-dimensional spouted bed are developed and validated with experimental data. The influences of initial moisture content, inlet air temperature, air recycle on the drying rate, urease inactivation, and energy consumption are also studied. The results revealed that the increase in initial moisture content slightly affected the drying rate and urease inactivation while the inlet air temperature caused a significant effect. To obtain a high drying rate and save energy consumption, the recycle air ratio should be kept in a range of 80-90%.  相似文献   

7.
The most important factors for examining the quality of soybeans in the animal feed industry are moisture and urease inactivation. Mathematical models for soybean drying and urease inactivation using two-dimensional spouted bed are developed and validated with experimental data. The influences of initial moisture content, inlet air temperature, air recycle on the drying rate, urease inactivation, and energy consumption are also studied. The results revealed that the increase in initial moisture content slightly affected the drying rate and urease inactivation while the inlet air temperature caused a significant effect. To obtain a high drying rate and save energy consumption, the recycle air ratio should be kept in a range of 80–90%.  相似文献   

8.
Variability is a key issue in the processing of many biological materials, in this case the drying of hardwood timber. This article reports the measurements of variability of the diffusion coefficient (a transport property), the initial moisture content, and the basic density that are relevant to the drying of blackbutt, Eucalyptus pilularis Sm, from northern New South Wales in Australia. The diffusion coefficient was quantified using a mathematical model solving Fick's second law of diffusion for mass transfer, and Fourier's law for heat transfer. The initial moisture content and the basic density were measured using experimental procedures. Specifically, within-tree and between-tree variations are reported. The coefficients of variation of the initial moisture contents and final moisture contents are 0.24 and 0.19, respectively, for within-tree variability. A similar result was found for the amount of between-tree variability. Compensating differences in the diffusion coefficients of the timber boards were a significant reason for the small dispersion of final moisture contents, despite the large variation in initial moisture contents.

An analysis of variance showed that some timber properties were affected by the board positions within trees and between trees. Circumferential and radial effects were significant for the within-tree variability of most transport properties. Moreover, principal components analysis suggested that timber boards with low densities have high initial moisture contents and high diffusion coefficients. A potential reason is that if there is less wood material per unit volume (lower density), then there is more space to be occupied by water (higher initial moisture content), and there is also less resistance to the diffusive transport of moisture (higher diffusion coefficients).  相似文献   

9.
In this work, the effects of power level and sample mass on moisture content, moisture ratio, drying rate, and drying time of Turkey okra (Hibiscus esculenta L.) were investigated using microwave drying technique. Various microwave power levels ranging from to 180 to 900 W were used for drying of 100 g of okra. To investigate the effect of sample mass on drying, the samples in the range of 25 to 100 g were dried at microwave power level of 360 W. To determine the kinetic parameters, the drying data were fitted to various models based on the ratios of the differences between the initial and final moisture contents and equilibrium moisture content. Among of the models proposed, Page's model gave a better fit for all drying conditions used. The activation energy for microwave drying of okra was calculated using an exponential expression based on Arrhenius equation and was found to be 5.54 W/g.  相似文献   

10.
Microwave Drying of Wood Strands   总被引:2,自引:0,他引:2  
Characteristics of microwave drying of wood strands with different initial moisture contents and geometries were investigated using a commercial small microwave oven under different power inputs. Temperature and moisture changes along with the drying efficiency were examined at different drying scenarios. Extractives were analyzed using gas chromatography/mass spectrometry (GC/MS). The results showed that the microwave drying process consisted of three distinct periods (warm-up period, evaporation period, and heating-up period) during which the temperature, moisture change, and drying efficiency could vary. Most of the extractives were remnant during microwave drying. It was observed that with proper selections of power input, weight of drying material, and drying time, microwave drying could increase the drying rate, save up to 50% of energy consumption, and decrease volatile organic compound (VOC) emissions when compared with the conventional drying method.  相似文献   

11.
《Drying Technology》2007,25(10):1703-1712
The effect of microwave drying technique on moisture content, moisture ratio, drying rate, drying time, effective moisture diffusivity, and porosity of spinach (Spinacia oleracea L.) were investigated. By increasing the microwave output powers (180-900 W) and the sample amounts (25-100 g), the drying time decreased from 18 to 3.5 min and increased from 7.7 to 25 min, respectively. To determine the kinetic parameters, the drying data were fitted to various models based on the ratios of the differences between the initial and final moisture contents and equilibrium moisture content versus drying time. Among of the models proposed, Page's model gave a better fit for all drying conditions applied. The activation energy was calculated using an exponential expression based on Arrhenius equation. The relationship between the drying rate constant and effective moisture diffusivity was also estimated and gave a linear relationship.  相似文献   

12.
Abstract

Characteristics of microwave drying of wood strands with different initial moisture contents and geometries were investigated using a commercial small microwave oven under different power inputs. Temperature and moisture changes along with the drying efficiency were examined at different drying scenarios. Extractives were analyzed using gas chromatography/mass spectrometry (GC/MS). The results showed that the microwave drying process consisted of three distinct periods (warm-up period, evaporation period, and heating-up period) during which the temperature, moisture change, and drying efficiency could vary. Most of the extractives were remnant during microwave drying. It was observed that with proper selections of power input, weight of drying material, and drying time, microwave drying could increase the drying rate, save up to 50% of energy consumption, and decrease volatile organic compound (VOC) emissions when compared with the conventional drying method.  相似文献   

13.
ABSTRACT

Variability is a key issue in the processing of many biological materials, in this case the drying of hardwood timber. This article reports the measurements of variability of the diffusion coefficient (a transport property), the initial moisture content, and the basic density that are relevant to the drying of blackbutt, Eucalyptus pilularis Sm, from northern New South Wales in Australia. The diffusion coefficient was quantified using a mathematical model solving Fick's second law of diffusion for mass transfer, and Fourier's law for heat transfer. The initial moisture content and the basic density were measured using experimental procedures. Specifically, within-tree and between-tree variations are reported. The coefficients of variation of the initial moisture contents and final moisture contents are 0.24 and 0.19, respectively, for within-tree variability. A similar result was found for the amount of between-tree variability. Compensating differences in the diffusion coefficients of the timber boards were a significant reason for the small dispersion of final moisture contents, despite the large variation in initial moisture contents.

An analysis of variance showed that some timber properties were affected by the board positions within trees and between trees. Circumferential and radial effects were significant for the within-tree variability of most transport properties. Moreover, principal components analysis suggested that timber boards with low densities have high initial moisture contents and high diffusion coefficients. A potential reason is that if there is less wood material per unit volume (lower density), then there is more space to be occupied by water (higher initial moisture content), and there is also less resistance to the diffusive transport of moisture (higher diffusion coefficients).  相似文献   

14.
A convection wen drying technique was used to develop a modified method for moisture content determination in corn and soybeans. Samples of corn and soybeans in the moisture ranges of 10–27% w.b. and 9–23% w.b.. respectively. were exposed to different temperatures for varying periods of time in a forced air convection wen. A correlation was developed beheen the reference moisture content of the samples of corn and soybeans and the moisrure content after a drying time of one hour. The predicted results were in close agreement with the standard air oven test results in the range of moisture contents studied.  相似文献   

15.
A convection wen drying technique was used to develop a modified method for moisture content determination in corn and soybeans. Samples of corn and soybeans in the moisture ranges of 10-27% w.b. and 9-23% w.b.. respectively. were exposed to different temperatures for varying periods of time in a forced air convection wen. A correlation was developed beheen the reference moisture content of the samples of corn and soybeans and the moisrure content after a drying time of one hour. The predicted results were in close agreement with the standard air oven test results in the range of moisture contents studied.  相似文献   

16.
The humidity drying cycle gives rise to surface and body cracks in plastic clay. The cracks appear in the initial stages when the clay is being heated in a saturated atmosphere. Various factors affecting cracking in this initial heating stage were studied using a purified kaolin in the plastic state, and appropriate experimental models were used to isolate certain aspects for study. It is shown that the condensation of moisture on the clay surface is the major factor influencing the cracking of the plastic clay. The effect of thermal diffusion is insignificant and the loss of mechanical strength is of secondary importance. The balance af evidence from the literature and from this study indicates that capillarity plays a major part in the movement of moisture and the production of stresses during drying. When air spaces are present in the body, thermal capillarity may become important. Stresses caused by thermal expansion oppose those caused by drying shrinkage, while the thermal expansion of capillaries will have a negligible effect.  相似文献   

17.
The effect of microwave drying technique on moisture content, moisture ratio, drying rate, drying time, effective moisture diffusivity, and porosity of spinach (Spinacia oleracea L.) were investigated. By increasing the microwave output powers (180–900 W) and the sample amounts (25–100 g), the drying time decreased from 18 to 3.5 min and increased from 7.7 to 25 min, respectively. To determine the kinetic parameters, the drying data were fitted to various models based on the ratios of the differences between the initial and final moisture contents and equilibrium moisture content versus drying time. Among of the models proposed, Page's model gave a better fit for all drying conditions applied. The activation energy was calculated using an exponential expression based on Arrhenius equation. The relationship between the drying rate constant and effective moisture diffusivity was also estimated and gave a linear relationship.  相似文献   

18.
A MODEL FOR THIN-LAYER DRYING OF LENTILS   总被引:2,自引:0,他引:2  
A procedure was developed based on a three-component physical model to simulate the drying characteristics of Laird lentils. In this model, the cotyledons were simplified as a homogeneous slab where moisture transfer was governed by a one-dimensional diffusion equation, and the hilum and seedcoat were considered as two parallel routes for moisture to escape from a seed. The simulation procedure was verified with the experimental data from thin-layer drying testing on samples of 19.0 to 24.5% initial moisture content at temperatures from 23 to 80°C and relative humidities from 5 to 70%. Using previously obtained information on the transport properties of the cotyledons, the seedcoat, and the hilum, the simulation followed the drying data closely over temperatures between 23 and 60°C.  相似文献   

19.
To investigate the water mobility during a drying process, noodles were prepared with different gluten contents (10.0%, 12.5%, 15.0%, 17.5%, 20.0%, 22.5%, or 25.0%) and moisture contents (30%, 32%, or 34%), and dried on a food moisture analysis technology platform. Three types of water were deduced from relaxation signals measured by low-field nuclear magnetic resonance (LF-NMR) spectroscopy. Peak time T22 increased with gluten and moisture content but decreased with drying time from 4–6 to 1.0–1.7?ms after 1.5?h. Gluten content mainly affected the drying rate (DR) in the middle drying period, whereas initial moisture content had an influence in the middle drying period and final drying period.  相似文献   

20.
《Drying Technology》2013,31(7):1731-1754
Abstract

As reported by many researchers, it was found that fluidized bed paddy drying using high drying air temperatures of over 100°C affected the head rice yield and whiteness of dried rice. However, only a few studies on fluidized bed paddy drying with drying air temperatures below 100°C were so far reported. The main objective of this work was therefore to study the effect of fluidized bed drying air temperature on various quality parameters of Suphanburi 1 and Pathumthani 1 Indica rice. Paddy was dried from the initial moisture contents of 25.0, 28.8, and 32.5% dry basis to 22.5 ± 1.2% dry basis using inlet drying air temperatures between 40 and 150°C at 10°C/step. After fluidized bed drying, paddy was tempered and followed by ambient air aeration until its final moisture content was reduced to 16.3 ± 0.5% dry basis. The results showed that the head rice yield of Suphanburi 1 was significantly related to the inlet drying temperature and initial moisture content whilst there was no significant relationship between the head rice yield, drying temperature and initial moisture content for Pathumthani 1. The whiteness of the two rice varieties was slightly decreased with increase in drying air temperature and initial moisture content. It was also found that the hardness of both cooked rice varieties exhibited insignificant difference (p < 0.05) comparing to rewetted rice, which was gently dried by ambient air aeration in thin layer. The thermal analysis by DSC also showed that partial gelatinization occurred during drying at higher temperatures. Using inlet drying air temperatures in the range of 40–150°C therefore did not affected the quality of cooked rice and paddy. The milling quality of paddy was also well maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号