首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed approach.  相似文献   

2.
Common simplifications of the bandwidth matrix cannot be applied to existing kernels for density estimation with compositional data. In this paper, kernel density estimation methods are modified on the basis of recent developments in compositional data analysis and bandwidth matrix selection theory. The isometric log-ratio normal kernel is used to define a new estimator in which the smoothing parameter is chosen from the most general class of bandwidth matrices on the basis of a recently proposed plug-in algorithm. Both simulated and real examples are presented in which the behaviour of our approach is illustrated, which shows the advantage of the new estimator over existing proposed methods.  相似文献   

3.
A Kernel-Based Two-Class Classifier for Imbalanced Data Sets   总被引:3,自引:0,他引:3  
Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm  相似文献   

4.
有观测噪声的时变系统的参数估计   总被引:2,自引:0,他引:2  
本文给出了有观测噪声、线性离散时变系统的参数估计新方法。它由两段互耦的自适应状态估计器和自适应参数估计器组成。通过引入虚拟时变噪声,我们结合在互耦算法中产生的模型误差到虚拟噪声统计,使模型误差得到有效地补偿和克服滤波发散。模拟例子说明了本文方法的有效性。  相似文献   

5.
Shared kernel models for class conditional density estimation   总被引:3,自引:0,他引:3  
We present probabilistic models which are suitable for class conditional density estimation and can be regarded as shared kernel models where sharing means that each kernel may contribute to the estimation of the conditional densities of an classes. We first propose a model that constitutes an adaptation of the classical radial basis function (RBF) network (with full sharing of kernels among classes) where the outputs represent class conditional densities. In the opposite direction is the approach of separate mixtures model where the density of each class is estimated using a separate mixture density (no sharing of kernels among classes). We present a general model that allows for the expression of intermediate cases where the degree of kernel sharing can be specified through an extra model parameter. This general model encompasses both the above mentioned models as special cases. In all proposed models the training process is treated as a maximum likelihood problem and expectation-maximization algorithms have been derived for adjusting the model parameters.  相似文献   

6.
In this paper, a novel exemplar-based constructive approach using kernels is proposed for simultaneous pattern classification and multidomain pattern association tasks. The kernel networks are constructed on a modular basis by a simple one-shot self-structuring algorithm motivated from the traditional Hebbian principle and then, they act as the flexible memory capable of generalization for the respective classes. In the self-structuring kernel memory (SSKM), any arduous and iterative network parameter tuning is not involved for establishing the weight connections during the construction, unlike conventional approaches, and thereby, it is considered that the networks do not inherently suffer from the associated numerical instability. Then, the approach is extended for multidomain pattern association, in which a particular domain input cannot only activate some kernel units (KUs) but also the kernels in other domain(s) via the cross-domain connection(s) in between. Thereby, the SSKM can be regarded as a simultaneous pattern classifier and associator. In the simulation study for pattern classification, it is justified that an SSKM consisting of distinct kernel networks can yield relatively compact-sized pattern classifiers, while preserving a reasonably high generalization capability, in comparison with the approach using support vector machines (SVMs)  相似文献   

7.
We prove consistency results for two types of density estimators on a closed, connected Riemannian manifold under suitable regularity conditions. The convergence rates are consistent with those in Euclidean space as well as those obtained for a previously proposed class of kernel density estimators on closed Riemannian manifolds. The first estimator is the uniform mixture of heat kernels centered at each observation, a natural extension of the usual Gaussian estimator to Riemannian manifolds. The second is an approximate heat kernel (AHK) estimator that is motivated by more practical considerations, where observations occur on a manifold isometrically embedded in Euclidean space whose structure or heat kernel may not be completely known. We also provide some numerical evidence that the predicted convergence rate is attained for the AHK estimator.  相似文献   

8.
A conditional density function, which describes the relationship between response and explanatory variables, plays an important role in many analysis problems. In this paper, we propose a new kernel-based parametric method to estimate conditional density. An exponential function is employed to approximate the unknown density, and its parameters are computed from the given explanatory variable via a nonlinear mapping using kernel principal component analysis (KPCA). We develop a new kernel function, which is a variant to polynomial kernels, to be used in KPCA. The proposed method is compared with the Nadaraya-Watson estimator through numerical simulation and practical data. Experimental results show that the proposed method outperforms the Nadaraya-Watson estimator in terms of revised mean integrated squared error (RMISE). Therefore, the proposed method is an effective method for estimating the conditional densities.  相似文献   

9.
Methods for improving the basic kernel density estimator include variable locations, variable bandwidths and variable weights. Typically these methods are implemented separately and via pilot estimation of variation functions derived from asymptotic considerations. The starting point here is a simple maximum likelihood procedure which allows (in its greatest generality) variation of all these quantities at once, bypassing asymptotics and explicit pilot estimation. One special case of this approach is the density estimator associated with nonparametric maximum likelihood estimation (NPMLE) in a normal location mixture model. Another, closely associated with the NPMLE, is a kernel convolution sieve estimator proposed in 1982 but little used in practice to date. Simple algorithms are utilised, a simulation study is reported on, a method for bandwidth selection is investigated and an illustrative example is given. The simulations and other considerations suggest that the kernel convolution sieve provides an especially promising framework for further practical utilisation and development. And the method has a further advantage: it automatically reduces, where appropriate, to a few-component mixture model which indicates and initialises parametric mixture modelling of the data.  相似文献   

10.
Tremendous increase in user-generated content (UGC) published over the web in the form of natural language has posed a formidable challenge to automated information extraction (IE) and content analysis (CA). Techniques based on tree kernels (TK) have been successfully used for modelling semantic compositionality in many natural language processing (NLP) applications. Essentially, these techniques obtain the similarity of two production rules based on exact string comparison between the peer nodes. However, semantically identical tree fragments are forbidden even though they can contribute to the similarity of two trees. A mechanism needs to be addressed that accounts for the similarity of rules with varied syntax and vocabulary holding knowledge that are relatively analogous. In this paper, a hierarchical framework based on document object model (DOM) tree and linguistic kernels that jointly address subjectivity detection, opinion extraction and polarity classification is addressed. The model proceeds in three stages: during first stage, the contents of each DOM tree node is analysed to estimate the complexity of vocabulary and syntax using readability test. In second stage, the semantic tree kernels extended with word embeddings are used to classify nodes containing subjective and objective content. Finally, the content returned to be subjective is further examined for opinion polarity classification using fine-grained linguistic kernels. The efficiency of the proposed model is demonstrated through a series of experiments being conducted. The results reveal that the proposed polarity-enriched tree kernel (PETK) results in better prediction performance compared to the conventional tree kernels.  相似文献   

11.
针对工业、信息等领域出现的基于较大规模、非平稳变化复杂数据的回归问题,已有算法在计算成本及拟合效果方面无法同时满足要求.因此,文中提出基于多尺度高斯核的分布式正则化回归学习算法.算法中的假设空间为多个具有不同尺度的高斯核生成的再生核Hilbert空间的和空间.考虑到整个数据集划分的不同互斥子集波动程度不同,建立不同组合系数核函数逼近模型.利用最小二乘正则化方法同时独立求解各逼近模型.最后,通过对所得的各个局部估计子加权合成得到整体逼近模型.在2个模拟数据集和4个真实数据集上的实验表明,文中算法既能保证较优的拟合性能,又能降低运行时间.  相似文献   

12.
Standard fixed symmetric kernel-type density estimators are known to encounter problems for positive random variables with a large probability mass close to zero. It is shown that, in such settings, alternatives of asymmetric gamma kernel estimators are superior, but also differ in asymptotic and finite sample performance conditionally on the shape of the density near zero and the exact form of the chosen kernel. Therefore, a refined version of the gamma kernel with an additional tuning parameter adjusted according to the shape of the density close to the boundary is suggested. A data-driven method for the appropriate choice of the modified gamma kernel estimator is also provided. An extensive simulation study compares the performance of this refined estimator to those of standard gamma kernel estimates and standard boundary corrected and adjusted fixed kernels. It is found that the finite sample performance of the proposed new estimator is superior in all settings. Two empirical applications based on high-frequency stock trading volumes and realized volatility forecasts demonstrate the usefulness of the proposed methodology in practice.  相似文献   

13.
Kernel methods provide high performance in a variety of machine learning tasks. However, the success of kernel methods is heavily dependent on the selection of the right kernel function and proper setting of its parameters. Several sets of kernel functions based on orthogonal polynomials have been proposed recently. Besides their good performance in the error rate, these kernel functions have only one parameter chosen from a small set of integers, and it facilitates kernel selection greatly. Two sets of orthogonal polynomial kernel functions, namely the triangularly modified Chebyshev kernels and the triangularly modified Legendre kernels, are proposed in this study. Furthermore, we compare the construction methods of some orthogonal polynomial kernels and highlight the similarities and differences among them. Experiments on 32 data sets are performed for better illustration and comparison of these kernel functions in classification and regression scenarios. In general, there is difference among these orthogonal polynomial kernels in terms of accuracy, and most orthogonal polynomial kernels can match the commonly used kernels, such as the polynomial kernel, the Gaussian kernel and the wavelet kernel. Compared with these universal kernels, the orthogonal polynomial kernels each have a unique easily optimized parameter, and they store statistically significantly less support vectors in support vector classification. New presented kernels can obtain better generalization performance both for classification tasks and regression tasks.  相似文献   

14.
Indefinite kernels have attracted more and more attentions in machine learning due to its wider application scope than usual positive definite kernels. However, the research about indefinite kernel clustering is relatively scarce. Furthermore, existing clustering methods are mainly designed based on positive definite kernels which are incapable in indefinite kernel scenarios. In this paper, we propose a novel indefinite kernel clustering algorithm termed as indefinite kernel maximum margin clustering (IKMMC) based on the state-of-the-art maximum margin clustering (MMC) model. IKMMC tries to find a proxy positive definite kernel to approximate the original indefinite one and thus embeds a new F-norm regularizer in the objective function to measure the diversity of the two kernels, which can be further optimized by an iterative approach. Concretely, at each iteration, given a set of initial class labels, IKMMC firstly transforms the clustering problem into a classification one solved by indefinite kernel support vector machine (IKSVM) with an extra class balance constraint and then the obtained prediction labels will be used as the new input class labels at next iteration until the error rate of prediction is smaller than a prespecified tolerance. Finally, IKMMC utilizes the prediction labels at the last iteration as the expected indices of clusters. Moreover, we further extend IKMMC from binary clustering problems to more complexmulti-class scenarios. Experimental results have shown the superiority of our algorithms.  相似文献   

15.
In this work, we consider distributed moving horizon state estimation of nonlinear systems subject to communication delays and data losses. In the proposed design, a local estimator is designed for each subsystem and the distributed estimators communicate to collaborate. To handle the delays and data losses simultaneously, a predictor is designed for each subsystem estimator. A two-step prediction-update strategy is used in the predictor design in order to get a reliable prediction of the system state. In the design of each subsystem estimator, an auxiliary nonlinear observer is also taken advantage of to calculate a reference subsystem state estimate. In the local estimator, the reference state estimate is used to generate a confidence region within which the local estimator optimizes its subsystem state estimate. Sufficient conditions under which the proposed design gives decreasing and ultimately bounded estimation error are provided. The effectiveness of the proposed approach is illustrated via the application to a chemical process example.  相似文献   

16.
This paper introduces a general principle for constructing multiscale kernels on surface meshes, and presents a construction of the multiscale pre‐biharmonic and multiscale biharmonic kernels. Our construction is based on an optimization problem that seeks to minimize a smoothness criterion, the Laplacian energy, subject to a sparsity inducing constraint. Namely, we use the lasso constraint, which sets an upper bound on the l1 ‐norm of the solution, to obtain a family of solutions parametrized by this upper‐bound parameter. The interplay between sparsity and smoothness results in smooth kernels that vanish away from the diagonal. We prove that the resulting kernels have gradually changing supports, consistent behavior over partial and complete meshes, and interesting limiting behaviors (e.g. in the limit of large scales, the multiscale biharmonic kernel converges to the Green's function of the biharmonic equation); in addition, these kernels are based on intrinsic quantities and so are insensitive to isometric deformations. We show empirically that our kernels are shape‐aware, are robust to noise, tessellation, and partial object, and are fast to compute. Finally, we demonstrate that the new kernels can be useful for function interpolation and shape correspondence.  相似文献   

17.
A probabilistic construction of model validation   总被引:1,自引:0,他引:1  
We describe a procedure to assess the predictive accuracy of process models subject to approximation error and uncertainty. The proposed approach is a functional analysis-based probabilistic approach for which we represent random quantities using polynomial chaos expansions (PCEs). The approach permits the formulation of the uncertainty assessment in validation, a significant component of the process, as a problem of approximation theory. It has two essential parts. First, a statistical procedure is implemented to calibrate uncertain parameters of the candidate model from experimental or model-based measurements. Such a calibration technique employs PCEs to represent the inherent uncertainty of the model parameters. Based on the asymptotic behavior of the statistical parameter estimator, the associated PCE coefficients are then characterized as independent random quantities to represent epistemic uncertainty due to lack of information. Second, a simple hypothesis test is implemented to explore the validation of the computational model assumed for the physics of the problem. The above validation path is implemented for the case of dynamical system validation challenge exercise.  相似文献   

18.
In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.  相似文献   

19.
Insufficiency of labeled training data is a major obstacle for automatic video annotation. Semi-supervised learning is an effective approach to this problem by leveraging a large amount of unlabeled data. However, existing semi-supervised learning algorithms have not demonstrated promising results in large-scale video annotation due to several difficulties, such as large variation of video content and intractable computational cost. In this paper, we propose a novel semi-supervised learning algorithm named semi-supervised kernel density estimation (SSKDE) which is developed based on kernel density estimation (KDE) approach. While only labeled data are utilized in classical KDE, in SSKDE both labeled and unlabeled data are leveraged to estimate class conditional probability densities based on an extended form of KDE. It is a non-parametric method, and it thus naturally avoids the model assumption problem that exists in many parametric semi-supervised methods. Meanwhile, it can be implemented with an efficient iterative solution process. So, this method is appropriate for video annotation. Furthermore, motivated by existing adaptive KDE approach, we propose an improved algorithm named semi-supervised adaptive kernel density estimation (SSAKDE). It employs local adaptive kernels rather than a fixed kernel, such that broader kernels can be applied in the regions with low density. In this way, more accurate density estimates can be obtained. Extensive experiments have demonstrated the effectiveness of the proposed methods.  相似文献   

20.
This paper presents an efficient construction algorithm for obtaining sparse kernel density estimates based on a regression approach that directly optimizes model generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. A local regularization method is incorporated naturally into the density construction process to further enforce sparsity. An additional advantage of the proposed algorithm is that it is fully automatic and the user is not required to specify any criterion to terminate the density construction procedure. This is in contrast to an existing state-of-art kernel density estimation method using the support vector machine (SVM), where the user is required to specify some critical algorithm parameter. Several examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample optimized Parzen window density estimate. Our experimental results also demonstrate that the proposed algorithm compares favorably with the SVM method, in terms of both test accuracy and sparsity, for constructing kernel density estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号