首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In/sub 0.53/Ga/sub 0.47/As-based monolithic interconnected modules (MIMs) of thermophotovoltaic (TPV) devices lattice-matched to InP were grown by solid source molecular beam epitaxy. The MIM device consisted of ten individual In/sub 0.53/Ga/sub 0.47/As TPV cells connected in series on an InP substrate. An open-circuit voltage (V/sub oc/) of 4.82 V, short-circuit current density (J/sub sc/) of 1.03 A/cm/sup 2/ and fill factor of /spl sim/73% were achieved for a ten-junction MIM with a bandgap of 0.74 eV under high intensity white light illumination. Device performance uniformity was better than 1.5% across a full 2-in InP wafer. The V/sub oc/ and J/sub sc/ values are the highest yet reported for 0.74-eV band gap n-p-n MIM devices.  相似文献   

2.
Thin In/sub x/Ga/sub 1-x/As tunnel junction diodes having compositions from x=0.53 to 0.75 that span a range of bandgap energies from 0.74 to 0.55 eV, were grown on InP and metamorphic, step-graded In/sub x/Al/sub 1-x/As/InP substrates using molecular beam epitaxy and evaluated in the context of thermophotovoltaic (TPV) applications. Both carbon and beryllium were investigated as acceptor dopants. Metamorphic tunnel diodes with a bandgap of 0.60 eV (x=0.69) using carbon acceptor doping displayed highest peak current densities, in excess of 5900 A/cm/sup 2/ at a peak voltage of 0.31 V, within a 200 /spl Aring/ total thickness tunnel junction. Identically doped lattice-matched tunnel diodes with a bandgap of 0.74 eV exhibited lower peak current densities of approximately 2200 A/cm/sup 2/ at a higher peak voltage of 0.36 V, consistent with the theoretical bandgap dependence expected for ideal tunnel diodes. Specific resistivities of the 0.60 eV bandgap devices were in the mid-10/sup -5/ /spl Omega/-cm/sup 2/ range. Together with their 200 /spl Aring/ total thickness, the electrical results make these tunnel junctions promising for TPV applications where low-resistance, thin metamorphic tunnel junctions are desired.  相似文献   

3.
The first demonstration of a type-II InP/GaAsSb double heterojunction bipolar transistor (DHBT) with a compositionally graded InGaAsSb to GaAsSb base layer is presented. A device with a 0.4/spl times/6 /spl mu/m/sup 2/ emitter dimensions achieves peak f/sub T/ of 475 GHz (f/sub MAX/=265 GHz) with current density at peak f/sub T/ exceeding 12 mA//spl mu/m/sup 2/. The structure consists of a 25-nm InGaAsSb/GaAsSb graded base layer and 65-nm InP collector grown by MBE with breakdown voltage /spl sim/4 V which demonstrates the vertical scaling versus breakdown advantage over type-I DHBTs.  相似文献   

4.
In/sub 0.53/Ga/sub 0.47/As transferred-electron devices with Schottky-gate electrodes were fabricated. These devices can be used in optoelectronic circuits on InP or as millimetre wave oscillators. For the realisation of the gate electrode several enhancement layers were tested to increase the Schottky barrier height on In/sub 0.53/Ga/sub 0.47/As. The triggering of single dipole domains in the device was demonstrated.<>  相似文献   

5.
The effect of secondary impact ionization by the noninitiating carrier on the near avalanche behavior of high-speed n-p-n bipolar transistors is studied. We show that secondary collector ionization by generated holes traveling back toward the base layer significantly reduces BV/sub CBO/ if the hole ionization coefficient is higher than that of electrons [/spl beta//sub p/(E)>/spl alpha//sub n/(E)]: positive feedback associated with a strong secondary ionization sharpens the breakdown characteristic by speeding up carrier multiplication and decreases separation between the open-base collector-emitter (BV/sub CEO/) and the open-emitter base-collector (BV/sub CBO/) breakdown voltages. The effect of secondary ionization on the BV/sub CEO/-BV/sub CBO/ separation has not previously been described. Multiplication coefficient comparisons for representative InP, GaAs, and Si collectors indicate all structures can sustain low-current above BV/sub CEO/ operation from a transport (nonthermal) point of view, although the different degrees of secondary ionization in various semiconductors lead to fundamental differences when InP is compared to GaAs and Si since for the latter materials /spl beta//sub p/(E)相似文献   

6.
Small-area regrown emitter-base junction InP/In-GaAs/InP double heterojunction bipolar transistors (DHBT) using an abrupt InP emitter are presented for the first time. In a device with emitter-base junction area of 0.7 /spl times/ 8 /spl mu/m/sup 2/, a maximum 183 GHz f/sub T/ and 165 GHz f/sub max/ are exhibited. To our knowledge, this is the highest reported bandwidth for a III-V bipolar transistor utilizing emitter regrowth. The emitter current density is 6/spl times/10/sup 5/ A/cm/sup 2/ at V/sub CE,sat/ = 1.5 V. The small-signal current gain h/sub 21/ = 17, while collector breakdown voltage is near 6 V for the 1500-/spl Aring/-thick collector. The emitter structure, created by nonselective molecular beam epitaxy regrowth, combines a small-area emitter-base junction and a larger-area extrinsic emitter contact, and is similar in structure to that of a SiGe HBT. The higher f/sub T/ and f/sub max/ compared to previously reported devices are achieved by simplified regrowth using an InP emitter and by improvements to the regrowth surface preparation process.  相似文献   

7.
Type-II InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) with a 15-nm base were fabricated by contact lithography: 0.73/spl times/11 /spl mu/m/sup 2/ emitter devices feature f/sub T/=384GHz (f/sub MAX/=262GHz) and BV/sub CEO/=6V. This is the highest f/sub T/ ever reported for InP/GaAsSb DHBTs, and an "all-technology" record f/sub T//spl times/BV/sub CEO/ product of 2304 GHz/spl middot/V. This result is credited to the favorable scaling of InP/GaAsSb/InP DHBT breakdown voltages (BV/sub CEO/) in thin collector structures.  相似文献   

8.
InP-In/sub 0.53/Ga/sub 0.47/As-InP double heterojunction bipolar transistors (DHBTs) were grown on a GaAs substrate using a metamorphic buffer layer and then fabricated. The metamorphic buffer layer is InP - employed because of its high thermal conductivity to minimize device heating. An f/sub /spl tau// and f/sub max/ of 268 and 339 GHz were measured, respectively - both records for metamorphic DHBTs. A 70-nm SiO/sub 2/ dielectric sidewall was deposited on the emitter contact to permit a longer InP emitter wet etch for increased device yield and reduced base leakage current. The dc current gain /spl beta/ is /spl ap/35 and V/sub BR,CEO/=5.7 V. The collector leakage current I/sub cbo/ is 90 pA at V/sub cb/=0.3 V. These values of f/sub /spl tau//, f/sub max/, I/sub cbo/, and /spl beta/ are consistent with InP based DHBTs of the same layer structure grown on a lattice-matched InP substrate.  相似文献   

9.
We report an InP-InGaAs-InP double heterojunction bipolar transistor (DHBT), fabricated using a conventional triple mesa structure, exhibiting a 370-GHz f/sub /spl tau// and 459-GHz f/sub max/, which is to our knowledge the highest f/sub /spl tau// reported for a mesa InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The collector semiconductor was undercut to reduce the base-collector capacitance, producing a C/sub cb//I/sub c/ ratio of 0.28 ps/V at V/sub cb/=0.5 V. The V/sub BR,CEO/ is 5.6 V and the devices fail thermally only at >18 mW//spl mu/m/sup 2/, allowing dc bias from J/sub e/=4.8 mA//spl mu/m/sup 2/ at V/sub ce/=3.9 V to J/sub e/=12.5 mA//spl mu/m/sup 2/ at V/sub ce/=1.5 V. The device employs a 30 nm carbon-doped InGaAs base with graded base doping, and an InGaAs-InAlAs superlattice grade in the base-collector junction that contributes to a total depleted collector thickness of 150 nm.  相似文献   

10.
《Electronics letters》1993,29(2):169-170
MBE grown metamorphic In/sub 0.29/Al/sub 0.71/As/In/sub 0.3/Ga/sub 0.7/As/GaAs high electron mobility transistors (HEMTs) have been successfully fabricated. A 0.4 mu m triangular gate device showed transconductance as high as 700 mS/mm at a current density of 230 mA/mm. The measured f/sub T/ was 45 GHz and f/sub max/ was 115 GHz. These high values are, to the authors knowledge, the first reported for submicrometre metamorphic InAlAs/InGaAs/GaAs HEMTs with an indium content of 30%.<>  相似文献   

11.
ErP and ErSb compounds have been demonstrated to have metallic behaviour ( rho /sub ErP/=150 mu Omega cm; rho /sub ErSb/=60 mu Omega cm). The authors show that they can be epitaxially grown on InP and GaAs in an MBE system and that many matched systems (metallic layer)/(III-V semiconductor) can be built using ternary compounds of rare-earth and V elements.<>  相似文献   

12.
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz f/sub max/, which is the highest simultaneous f/sub /spl tau// and f/sub max/ for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW//spl mu/m/sup 2/ dissipation (failing at J/sub e/=10 mA//spl mu/m/sup 2/, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA//spl mu/m/sup 2/ at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.  相似文献   

13.
Modulation-doped field effect transistors (MODFETs) with 0.23 mu m gate lengths have been fabricated on an InAlAs/InGaAs/InP heterostructure grown by metal organic vapour phase epitaxy (MOVPE/MOCVD). Extrinsic DC transconductance as high as 800 mS/mm, and unity current gain cutoff frequency f/sub t/ of over 120 GHz at room temperature have been achieved. These g/sub m/ and f/sub t/ values compare favourably with the best devices of similar gate length grown by molecular-beam epitaxy (MBE) and are the highest values reported for any device grown by MOVPE.<>  相似文献   

14.
InP-In/sub 0.53/Ga/sub 0.47/As-InP double heterojunction bipolar transistors (DHBT) have been designed for use in high bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 391-GHz f/sub /spl tau// and 505-GHz f/sub max/, which is the highest f/sub /spl tau// reported for an InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The devices have been aggressively scaled laterally for reduced base-collector capacitance C/sub cb/. In addition, the base sheet resistance /spl rho//sub s/ along with the base and emitter contact resistivities /spl rho//sub c/ have been lowered. The dc current gain /spl beta/ is /spl ap/36 and V/sub BR,CEO/=5.1 V. The devices reported here employ a 30-nm highly doped InGaAs base, and a 150-nm collector containing an InGaAs-InAlAs superlattice grade at the base-collector junction. From this device design we also report a 142-GHz static frequency divider (a digital figure of merit for a device technology) fabricated on the same wafer. The divider operation is fully static, operating from f/sub clk/=3 to 142.0 GHz while dissipating /spl ap/800 mW of power in the circuit core. The circuit employs single-buffered emitter coupled logic (ECL) and inductive peaking. A microstrip wiring environment is employed for high interconnect density, and to minimize loss and impedance mismatch at frequencies >100 GHz.  相似文献   

15.
InP-In/sub 0.53/Ga/sub 0.47/As-InP double heterojunction bipolar transistors (DHBTs) were grown on GaAs substrates. A 284-GHz power-gain cutoff frequency f/sub max/ and a 216-GHz current-gain cutoff frequency f/sub /spl tau// were obtained, presently the highest reported values for metamorphic HBTs. The breakdown voltage BV/sub CEO/ was >5 V while the dc current gain /spl beta/ was 21. High thermal conductivity InP metamorphic buffer layers were employed in order to minimize the device thermal resistance.  相似文献   

16.
In/sub 0.425/Al/sub 0.575/As-In/sub x/Ga/sub 1-x/As metamorphic high electron mobility transistors (MHEMTs) with two different channel designs, grown by molecular beam epitaxy (MBE) system, have been successfully investigated. Comprehensive dc and high-frequency characteristics, including the extrinsic transconductance, current driving capability, device linearity, pinch-off property, gate-voltage swing, breakdown performance, unity-gain cutoff frequency, max. oscillation frequency, output power, and power gain, etc., have been characterized and compared. In addition, complete parametric information of the small-signal device model has also been extracted and discussed for the pseudomorphic channel MHEMT (PC-MHEMT) and the V-shaped symmetrically graded channel MHEMT (SGC-MHEMT), respectively.  相似文献   

17.
A novel high-/spl kappa/ silicon-oxide-nitride-oxide-silicon (SONOS)-type memory using TaN/Al/sub 2/O/sub 3//Ta/sub 2/O/sub 5//HfO/sub 2//Si (MATHS) structure is reported for the first time. Such MATHS devices can keep the advantages of our previously reported TaN/HfO/sub 2//Ta/sub 2/O/sub 5//HfO/sub 2//Si device structure to obtain a better tradeoff between long retention and fast programming as compared to traditional SONOS devices. While at the same time by replacing hafnium oxide (HfO/sub 2/) with aluminum oxide (Al/sub 2/O/sub 3/) for the top blocking layer, better blocking efficiency can be achieved due to Al/sub 2/O/sub 3/'s much larger barrier height, resulting in greatly improved memory window and faster programming. The fabricated devices exhibit a fast program and erase speed, excellent ten-year retention and superior endurance up to 10/sup 5/ stress cycles at a tunnel oxide of only 9.5 /spl Aring/ equivalent oxide thickness.  相似文献   

18.
A significant (2-5*) reduction in 1/f noise was observed in In/sub 0.53/Ga/sub 0.47/As photodetector arrays read out by a PMOS multiplexer, when the epitaxial InP cap layer doping was changed from undoped to sulfur-doped n type of about 3*10/sup 16/ cm/sup -3/. A further decrease was observed when the InP buffer layer was also changed from undoped to sulfur-doped n type of about 5*10/sup 17/ cm/sup -3/. Data was presented for the variation of 1/f noise, within a temperature range of 18 degrees C to -40 degrees C. Surface states at the InP cap/SiN interface appears to be the primary source of 1/f noise, with the bulk states at the n/sup -/In/sub 0.53/Ga/sub 0.47/As buffer hetero-interface as a secondary source. Increased n-type doping in the high-bandgap InP cap and buffer layers may reduce electron trapping, and thus 1/f noise. The measured noise spectrum of InGaAs photodetectors varies as f/sup y/ with y being approximately -0.45 for device structures with doped and undoped InP can layers. For a doped InP buffer layer, this value of y is -0.3.<>  相似文献   

19.
High performance InP/InGaAs double heterojunction bipolar transistors (DHBTs) incorporating carbon-doped bases and graded base-collector junctions implemented using a short period superlattice were grown by gas source MBE (GSMBE). Base hole concentrations up to 1.6*10/sup 19/ cm/sup -3/ were obtained, using CCl/sub 4/ as the dopant source. Transistors with 2*10 mu m/sup 2/ emitters achieved f/sub t/ and f/sub max/ values up to 76 and 82 GHz, respectively. These devices demonstrate state of the art values of f/sub max/.<>  相似文献   

20.
Vertical scaling of the epitaxial structure has allowed submicron InP/InGaAs-based single heterojunction bipolar transistors (SHBTs) to achieve record high-frequency performance. The 0.25/spl times/16 /spl mu/m/sup 2/ transistors, featuring a 25-nm base and a 100-nm collector, display current gain cut-off frequencies f/sub T/ of 452 GHz. The devices operate at current densities above 1000 kA/cm/sup 2/ and have BV/sub CEO/ breakdowns of 2.1 V. A detailed analysis of device radio frequency (RF) parameters, and delay components with respect to scaling of the collector thickness is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号