首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Application of new solvents will substantially contribute to the reduction of the energy demand for the post combustion capture of CO2 from power plant flue gases. The present work describes tests of such new solvents in a gas-fired pilot plant, which comprises the complete absorption/desorption process (column diameters 0.125 m, absorber/desorber packing height 4.25/2.55 m, packing type: Sulzer BX 500, flue gas flow 30–100 kg/h, CO2 partial pressure 35–135 mbar). Two new solvents CESAR1 (0.28 g/g 2-amino-2-methyl-1-propanol+0.17 g/g piperazine+0.55 g/g H2O) and CESAR2 (0.32 g/g 1, 2-ethanediamine+0.68 g/g H2O), which were developed in an EU-project, were systematically studied and compared to MEA (0.3 g/g monoethanolamine+0.7 g/g H2O). The two new solvents and MEA were studied in the same way in the pilot plant and detailed results are reported for all solvents. In the present study the structured packing Sulzer BX 500 is used. The measurements are carried out at a constant CO2 removal rate of 90% by an adjustment of the regeneration energy in the desorber for systematically varied solvent flow rates. An optimal solvent flow rate leading to a minimum energy requirement is found from these studies. Direct comparisons of such results can be misleading if there are differences in the kinetics of the different solvent systems. The influence of kinetic effects is experimentally studied by varying the flue gas flow rate at a constant ratio of solvent mass flow to flue gas mass flow and constant CO2 removal rate. Results from these studies indicate similar kinetics for CESAR1, CESAR2 and MEA. The direct comparison of the pilot plant results for these solvents is therefore justified. Both CESAR1 and CESAR2 show improvements compared to MEA. The most promising is CESAR1 with a reduction of about 20% in the regeneration energy and 45% in the solvent flow rate.  相似文献   

2.
In the work presented in this paper, an alternative process concept that can be applied as retrofitting option in coal-fired power plants for CO2 capture is examined. The proposed concept is based on the combination of two fundamental CO2 capture technologies, the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing. A 330 MWel Greek lignite-fired power plant and a typical 600 MWel hard coal plant have been examined for the process simulations. In a retrofit application of the ECO-Scrub technology, the existing power plant modifications are dominated by techno-economic restrictions regarding the boiler and the steam turbine islands. Heat integration from processes (air separation, CO2 compression and purification and the flue gas treatment) can result in reduced energy and efficiency penalties. In the context of this work, heat integration options are illustrated and main results from thermodynamic simulations dealing with the most important features of the power plant with CO2 capture are presented for both reference and retrofit case, providing a comparative view on the power plant net efficiency and energy consumptions for CO2 capture. The operational characteristics as well as the main figures and diagrams of the plant’s heat balances are included.  相似文献   

3.
Amine and other liquid solvent CO2 capture systems capture have historically been developed in the oil and gas industry with a different emphasis to that expected for fossil fuel power generation with post-combustion capture. These types of units are now being adapted for combustion flue gas scrubbing for which they need to be designed to operate at lower CO2 removal rates - around 85-90% and to be integrated with CO2 compression systems. They also need to be operated as part of a complete power plant with the overall objective of turning fuel into low-carbon electricity.The performance optimisation approach for solvents being considered for post-combustion capture in power generation therefore needs to be updated to take into account integration with the power cycle and the compression train. The most appropriate metric for solvent assessment is the overall penalty on electricity output, rather than simply the thermal energy of regeneration of the solvent used.Methodologies to evaluate solvent performance that have been reported in the literature are first reviewed. The results of the model of a steam power cycle integrated with the compression system focusing on key parameters of the post-combustion capture plant - solvent energy of regeneration, solvent regeneration temperature and desorber pressure - are then presented. The model includes a rigorous thermodynamic integration of the heat available in the capture and compression units into the power cycle for a range of different solvents, and shows that the electricity output penalty of steam extraction has a strong dependence on solvent thermal stability and the temperature available for heat recovery. A method is provided for assessing the overall electricity output penalty (EOP), expressed as total kWh of lost output per tonne of CO2 captured including ancillary power and compression, for likely combinations of these three key post-combustion process parameters. This correlation provides a more representative method for comparing post-combustion capture technology options than the use of single parameters such as solvent heat of regeneration.  相似文献   

4.
An innovative, technical approach for the reduction of CO2 emissions is presented that utilizes alkaline wastes to capture CO2 from flue gases in stable mineral form. Comprehensive pilot‐scale experiments were conducted with the developed flue gas scrubbing system at a power plant site. By optimizing the process parameters gas flux, CO2 partial pressure, circulation flux and suspension liquid‐to‐solid ratio, a CO2 binding of 40 – 90 g kg–1 waste could be reached and up to 25 % of the CO2 could be captured. The new technique is economically advantageous especially when both alkaline waste and CO2 are produced on site and when the carbonated products can be used as secondary resources.  相似文献   

5.
Yewen Tan 《Fuel》2002,81(8):1007-1016
This paper describes a series of experiments conducted with natural gas in air and in mixtures of oxygen and recycled flue gas, termed O2/CO2 recycle combustion. The objective is to enrich the flue gas with CO2 to facilitate its capture and sequestration. Detailed measurements of gas composition, flame temperature and heat flux profiles were taken inside CANMET's 0.3 MWth down-fired vertical combustor fitted with a proprietary pilot scale burner. Flue gas composition was continuously monitored. The effects of burner operation, including swirling of secondary stream and air staging, on flame characteristics and NOx emissions were also studied. The results of this work indicate that oxy-gas combustion techniques based on O2/CO2 combustion with flue gas recycle offer excellent potential for retrofit to conventional boilers for CO2 emission abatement. Other benefits of the technology include considerable reduction and even elimination of NOx emissions, improved plant efficiency due to lower gas volume and better operational flexibility.  相似文献   

6.
Post-combustion carbon capture (PCC) from fossil fuel power plants by reactive absorption can substantially contribute to reduce emissions of the greenhouse gas CO2. To test new solvents for this purpose small pilot plants are used. The present paper describes results of comprehensive studies of the standard PCC solvent MEA (0.3 g/g monoethanolamine in water) in a pilot plant in which the closed cycle of absorption/desorption process is continuously operated (column diameters: 0.125 m, absorber/desorber packing height: 4.25/2.55 m, packing type: Sulzer BX 500, flue gas flow: 30-110 kg/h, CO2 partial pressure: 35-135 mbar). The data establish a base line for comparisons with new solvents tested in the pilot plant and can be used for a validation of models of the PCC process with MEA. The ratio of the solvent to the flue gas mass flow is systematically varied at constant CO2 removal rate, and CO2 partial pressure in the flue gas. Optimal operating points are determined. In the present study the structured packing Sulzer BX 500 is used. The experiments with the removal rate variation are carried out so that the results can directly be compared to those from a previous study in the same plant that was carried out using Sulzer Mellapak 250.Y. A strategy for identifying the influence of absorption kinetics on the results is proposed, which is based on a variation of the gas load at a constant L/G ratio and provides valuable insight on the transferability of pilot plant results.  相似文献   

7.
Sharon Sjostrom  Holly Krutka 《Fuel》2010,89(6):1298-27
Processes based upon solid sorbents are currently under consideration for post-combustion CO2 capture. Twenty-four different sorbent materials were examined on a laboratory scale in a cyclic temperature swing adsorption/regeneration CO2 capture process in simulated coal combustion flue gas. Ten of these materials exhibited significantly lower theoretical regeneration energies compared to the benchmark aqueous monoethanolamine, supporting the hypothesis that CO2 capture processes based upon solids may provide cost benefits over solvent-based processes. The best performing materials were tested on actual coal-fired flue gas. The supported amines exhibited the highest working CO2 capacities, although they can become poisoned by the presence of SO2. The carbon-based materials showed excellent stability but were generally categorized as having low CO2 capacities. The zeolites worked well under dry conditions, but were quickly poisoned by the presence of moisture. Although no one type of material is without concerns, several of the materials tested have theoretical regeneration energies significantly lower than that of the industry benchmark, warranting further development research.  相似文献   

8.
In the CO2 capture process from coal-derived flue gas where amine solvents are used, the flue gas can entrain small liquid droplets into the gas stream leading to emission of the amine solvent. The entrained drops, or mist, will lead to high solvent losses and cause decreased CO2 capture performance. In order to reduce the emissions of the fine amine droplets from CO2 absorber, a novel method using charged colloidal gas aphron (CGA) generated by an anionic surfactant was developed. The CGA absorption process for MEA emission reduction was optimized by investigating the surfactant concentration, stirring speed of the CGA generator, and capture temperature. The results show a significant reduction of MEA emissions of over 50% in the flue gas stream exiting the absorber column of a pilot scale CO2 capture unit.  相似文献   

9.
A. Lawal  M. Wang  P. Stephenson  H. Yeung 《Fuel》2009,88(12):2455-2462
Power generation from fossil fuel-fired power plants is the largest single source of CO2 emissions. Post combustion capture via chemical absorption is viewed as the most mature CO2 capture technique. This paper presents a study of the post combustion CO2 capture with monoethanolamine (MEA) based on dynamic modelling of the process. The aims of the project were to compare two different approaches (the equilibrium-based approach versus the rate-based approach) in modelling the absorber dynamically and to understand the dynamic behaviour of the absorber during part load operation and with disturbances from the stripper. A powerful modelling and simulation tool gPROMS was chosen to implement the proposed work. The study indicates that the rate-based model gives a better prediction of the chemical absorption process than the equilibrium-based model. The dynamic simulation of the absorber indicates normal absorber column operation could be maintained during part load operation by maintaining the ratio of the flow rates of the lean solvent and flue gas to the absorber. Disturbances in the CO2 loading of the lean solvent to the absorber significantly affect absorber performance. Further work will extend the dynamic modelling to the stripper for whole plant analysis.  相似文献   

10.
Among carbon capture and storage (CCS), the post-combustion capture of carbon dioxide (CO2) by means of chemical absorption is actually the most developed process. Steady state process simulation turned out as a powerful tool for the design of such CO2 scrubbers. Besides steady state modeling, transient process simulations deliver valuable information on the dynamic behavior of the system. Dynamic interactions of the power plant with the CO2 separation plant can be described by such models. Within this work a dynamic process simulation model of the absorption unit of a CO2 separation plant was developed. For describing the chemical absorption of CO2 into an aqueous monoethanolamine solution a rate based approach was used. All models were developed within the Aspen Custom Modeler® simulation environment. Thermo physical properties as well as transport properties were taken from the electrolyte non-random-two-liquid model provided by the Aspen Properties® database. Within this work two simulation cases are presented. In a first simulation the inlet temperature of the flue gas and the lean solvent into the absorber column was changed. The results were validated by using experimental data from the CO2SEPPL test rig located at the Dürnrohr power station. In a second simulation the flue gas flow to the separation plant was increased. Due to the unavailability of experimental data a validation of the results from the second simulation could not be achieved.  相似文献   

11.
The main challenge in the CO2 capture from flue gases is to reduce the energy consumption required for solvent regeneration. Lipophilic amines exhibit a thermomorphic phase transition upon heating, giving rise to autoextractive behaviour, which enhances desorption at temperatures well below the solvent boiling point. The low regeneration temperature of less than 80 °C together with the high cyclic CO2 loading capacity (c. 0.9 mol-CO2/mol-absorbent) of such biphasic amine systems permit the use of low temperature and even waste heat for desorption purposes. In order to improve the capture process and reduce the commensurate energy demand still further, desorption experiments were carried out at 70-80 °C and techniques for enhancing CO2 release without gas stripping were also studied. The comparison of various amines at a concentration of 3 M and for a 15 mol% CO2 feed gas demonstrates the considerable potential of lipophilic amines for the CO2 absorption process. Chemical stability is a decisive factor for the industrial application of amine absorbents. Degradation of the novel lipophilic amine absorbents was shown to be minor, while volatility losses represent a major shortcoming of the biphasic solvent systems. Appropriate countermeasures to limit solvent losses were examined experimentally.  相似文献   

12.
《分离科学与技术》2012,47(13):1857-1865
Carbon dioxide is the most important anthropogenic greenhouse gas and it accounts for about 80% of all greenhouse gases (GHG). The global atmospheric CO2 concentrations have been increased significantly and have become the major source responsible for global warming; the greatest environmental challenge the world is facing now. The efforts to control the GHG emissions include the recovery of CO2 from flue gas. In this work, feasibility analysis, based on a single stage membrane process, has been carried out with an in-house membrane program interfaced within process simulation program (AspenHysys) to investigate the influence of process parameters on the energy demand and flue gas processing cost. A novel CO2-selective membrane with the facilitated transport mechanism has been employed to capture CO2 from the flue gas mixtures. The results show that a membrane process using the facilitated transport membrane can also be considered as an alternative CO2 capture process and it is possible to achieve more than 90% CO2 recovery and 90% CO2 purity in the permeate with reasonable energy consumption compared to amine absorption and other capture techniques.  相似文献   

13.
A. Lawal  P. Stephenson  H. Yeung 《Fuel》2010,89(10):2791-2801
Post-combustion capture by chemical absorption using MEA solvent remains the only commercial technology for large scale CO2 capture for coal-fired power plants. This paper presents a study of the dynamic responses of a post-combustion CO2 capture plant by modelling and simulation. Such a plant consists mainly of the absorber (where CO2 is chemically absorbed) and the regenerator (where the chemical solvent is regenerated). Model development and validation are described followed by dynamic analysis of the absorber and regenerator columns linked together with recycle. The gPROMS (Process Systems Enterprise Ltd.) advanced process modelling environment has been used to implement the proposed work. The study gives insights into the operation of the absorber-regenerator combination with possible disturbances arising from integrated operation with a power generation plant. It is shown that the performance of the absorber is more sensitive to the molar L/G ratio than the actual flow rates of the liquid solvent and flue gas. In addition, the importance of appropriate water balance in the absorber column is shown. A step change of the reboiler duty indicates a slow response. A case involving the combination of two fundamental CO2 capture technologies (the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing) is studied. The flue gas composition was altered to mimic that observed with the combination. There was an initial sharp decrease in CO2 absorption level which may not be observed in steady-state simulations.  相似文献   

14.
Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) and Delta Electricity have developed, commissioned and operated an A$7 million aqueous NH3 based post-combustion capture (PCC) pilot plant at the Munmorah black coal fired power station in Australia. The results from the pilot plant trials will be used to address the gap in know-how on application of aqueous NH3 for post-combustion capture of CO2 and other pollutants in the flue gas and explore the potential of the NH3 process for application in the Australia power sector. This paper is one of a series of publications to report and discuss the experimental results obtained from the pilot plant trials and primarily focuses on the absorption section.The pilot plant trials have confirmed the technical feasibility of the NH3 based capture process. CO2 removal efficiency of more than 85% can be achieved even with low NH3 content of up to 6 wt%. The NH3 process is effective for SO2 but not for NO in the flue gas. More than 95% of SO2 in the flue gas is removed in the pre-treatment column using NH3. The mass transfer coefficients for CO2 in the absorber as functions of CO2 loading and NH3 concentration have been obtained based on pilot plant data.  相似文献   

15.
Post-combustion is considered among the different options for CO2 capture as the most mature available technology. All major components of the CO2 absorption/desorption process are commercially available but at a smaller scale, and they are not integrated and optimized for the application in power plants. Therefore, it is still to be demonstrated that this process is a viable option for the capture of CO2 at power plants. The amine scrubbing process with standard solvents is highly energy demanding due to solvent regeneration and CO2 compression. This is a significant energy sink for the power plant and efficiency can be reduced up to 16%-points. In order to minimise the energy penalty, complete integration and optimization of the capture and the power plant processes are necessary.Simulations of the power plant cycle and the amine scrubbing system have been performed with specialized software. The results of the integration are discussed.  相似文献   

16.
Chemical-looping combustion (CLC) is a combustion technique where the CO2 produced is inherently separated from the rest of the flue gases with a considerably low energy penalty. For this reason, CLC has emerged as one of the more attractive options to capture CO2 from fossil fuel combustion. When applying CLC with solid fuels, the use of a low cost oxygen carrier is highly important, and one such low cost oxygen carrier is the mineral ilmenite. The current work investigates the reactivity of several ilmenites, some which are synthetically produced by freeze granulation and two natural minerals, one Norwegian ilmenite and one South African ilmenite.  相似文献   

17.
The performance of a proprietary solvent (CAER-B2), an amine-carbonate blend, for the absorption of CO2 from coal-derived flue gas is evaluated and compared with state-of-the-art 30 wt% monoethanolamine (MEA) under similar experimental conditions in a 0.1 MWth pilot plant. The evaluation was done by comparing the carbon capture efficiency, the overall mass transfer rates, and the energy of regeneration of the solvents. For similar carbon loadings of the solvents in the scrubber, comparable mass transfer rates were obtained. The rich loading obtained for the blend was 0.50 mol CO2/mol amine compared to 0.44 mol CO2/mol amine for MEA. The energy of regeneration for the blend was about 10% lower than that of 30 wt% MEA. At optimum conditions, the blend shows promise in reducing the energy penalty associated with using industry standard, MEA, as a solvent for CO2 capture.  相似文献   

18.
Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency.Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas-solid flow is essential for the optimization and operation of a chemical looping combustor.Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.  相似文献   

19.
CO2 capture systems based on the carbonation/calcination loop have gained rapid interest due to promising carbonator CO2 capture efficiency, low sorbent cost and no flue gases treatment is required before entering the system. These features together result in a competitively low cost CO2 capture system. Among the key variables that influence the performance of these systems and their integration with power plants, the carbonation conversion of the sorbent and the heat requirement at calciner are the most relevant. Both variables are mainly influenced by CaO/CO2 ratio and make-up flow of solids. New sorbents are under development to reduce the decay of their carbonation conversion with cycles. The aim of this study is to assess the competitiveness of new limestones with enhanced sorption behaviour applied to carbonation/calcination cycle integrated with a power plant, compared to raw limestone. The existence of an upper limit for the maximum average capture capacity of CaO has been considered. Above this limit, improving sorbent capture capacity does not lead to the corresponding increase in capture efficiency and, thus, reduction of CO2 avoided cost is not observed. Simulations calculate the maximum price for enhanced sorbents to achieve a reduction in CO2 removal cost under different process conditions (solid circulation and make-up flow). The present study may be used as an assessment tool of new sorbents to understand what prices would be competitive compare with raw limestone in the CO2 looping capture systems.  相似文献   

20.
Chemical-Looping Combustion (CLC) is an emerging technology for CO2 capture because separation of this gas from the other flue gas components is inherent to the process and thus no energy is expended for the separation. For its use with coal as fuel in power plants, a process integrated by coal gasification and CLC would have important advantages for CO2 capture. This paper presents the combustion results obtained with a Cu-based oxygen carrier in a continuous operation CLC plant (500 Wth) using syngas as fuel. For comparison purposes pure H2 and CO were also used. Tests were performed at two temperatures (1073 and 1153 K), different solid circulation rates and power inputs. Full syngas combustion was reached at 1073 K working at f higher than 1.5. The syngas composition had small effect on the combustion efficiency. This result seems to indicate that the water gas shift reaction acts as an intermediate step in the global combustion reaction of the syngas. The results obtained after 40 h of operation showed that the copper-based oxygen carrier prepared by impregnation could be used in a CLC plant for syngas combustion without operational problems such as carbon deposition, attrition, or agglomeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号