首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for obtaining activated carbons from cherry stones by chemical activation with NaOH is described. Carbonaceous adsorbents were obtained by two methods of activation (physical mixing and impregnation) and two variants of thermal treatment (at a constant or increasing temperature). Cherry stones were proved to be effective cheap precursors of carbon adsorbents, characterised by large pore volume (ranging from 0.22 to 0.47 cm3/g) and good sorption abilities (iodine number from 343 to 996 mg/g). The activated carbons obtained usually have strongly microporous structure and acidic surface character. The best physicochemical properties and adsorption properties towards iodine were found to be shown by the carbon samples obtained by physical mixing of the precursor or char with the activating agent followed by activation at 600 °C.  相似文献   

2.
Preparation of activated carbon from paper mill sludge by KOH-activation   总被引:2,自引:0,他引:2  
The purpose of this study is the preparation of activated carbon using paper mill sludge collected from biological wastewater treatment plant. The char produced from pyrolysis of paper mill sludge was chemically activated with potassium hydroxide. A systematic investigation of the effect of activation agent ratio, activation temperature and time on the properties of the char was carried out in a rotary kiln reactor. The chemically activated carbons were characterized by measuring iodine and methylene blue number and specific surface area. The activated carbon prepared from char of paper mill sludge in this study had maximum iodine and methylene blue number of 726.0 mg/g and 152.0 mg/g, and specific surface area of 1,002.0 m2/g, respectively. The result of estimation on adsorption capacities of metals, the Freundlich isotherms, yields a fairly good fit to the adsorption data, indicating a monolayer adsorption of metals onto activated carbon prepared from char of paper mill sludge using a potassium hydroxide as the activating agents.  相似文献   

3.
The present research explores the feasibility of microwave irradiation for preparation of high surface area activated carbon from pineapple peel (PPAC), an agricultural effluent emitted from the food can processing industries via KOH and K2CO3 activation. The activation process was performed at the microwave power of 600 W and irradiation time of 6 min. The equilibrium behavior of PPAC was investigated by performing batch adsorption experiments using methylene blue as adsorbate. Nonlinear adsorption isotherm models, Langmuir, Freundlich and Temkin were used to simulate the equilibrium data. KOH activated sample demonstrated a better development of pore structure, with the BET surface area, total pore volume and average pore size of 1006 m2/g, 0.59 m3/g and 23.44 Å, respectively, while the monolayer adsorption capacity of methylene blue was determined to be 462.10 mg/g. The findings support the potential use of microwave assisted KOH and K2CO3 activation as a promising activation technique.  相似文献   

4.
Nitrogen-containing activated carbon (NAC) derived from ammonium humates was produced and its porous structure (specific surface, pore volume) investigated. The NAC is mesoporous activated carbon with surface area of 557 m2/g and containing 2.4 wt.% of nitrogen. Sorption characteristics (sorption activity of iodine, methylene blue, benzene and metal ions Cu2+ and Pb2+) of NAC are compared with activated charcoal and BAU-A.  相似文献   

5.
将梧桐锯末和聚丙烯塑料按比例混合后,采用K2CO3活化法制备活性炭,基于中心组合实验设计(CCD)的响应面法(RSM),以碘吸附值和亚甲基蓝吸附值为优化目标,优化工艺参数。结果表明,当塑料含量为19wt%、无水K2CO3与梧桐锯末质量比为1.73、活化温度为958℃、活化时间为91 min时,所制活性炭的性能最优,碘吸附容量为1320.97 mg/g,亚甲基蓝的吸附容量为471.95 mg/g,与二阶模型预测值接近,表明该模型具有较高的可信度。方差分析结果表明,盐料比、活化温度、活化时间提高对活性炭的碘吸附容量有显著的促进作用,而塑料含量对活性炭碘吸附容量有抑制作用;活化温度、活化时间对活性炭的亚甲基蓝吸附容量影响显著,与塑料含量均具有促进作用,而盐料比是非显著因素且有抑制作用。最优条件下所制活性炭的比表面积为1916.10 m2/g,总孔容为1.12 cm3/g,其中介孔高达70.10%。相比于单因素优化实验所制活性炭,比表面积提高了454.11 m2/g。FT-IR分析表明两种优化条件下所制活性炭的官能团基本没有变化,活性炭亚甲基蓝吸附量的提高主要是由于样品的比表面积增大。  相似文献   

6.
In this study, waste palm shell was used to produce activated carbon (AC) using microwave radiation and zinc chloride as a chemical agent. The operating parameters of the preparation process were optimised by a combination of response surface methodology (RSM) and central composite design (CCD). The influence of the four major parameters, namely, microwave power, activation time, chemical impregnation ratio and particle size, on methylene blue (MB) adsorption capacity and AC yield were investigated. Based on the analysis of variance, microwave power and microwave radiation time were identified as the most influential factors for AC yield and MB adsorption capacity, respectively. The optimum preparation conditions are a microwave power of 1200 W, an activation time of 15 min, a ZnCl2 impregnation ratio of 1.65 (g Zn/g precursor) and a particle size of 2 mm. The prepared AC under the optimised condition had a BET surface area (SBET) of 1253.5 m2/g with a total pore volume (Vtot) of 0.83 cm3/g, which 56% of it was contributed to the micropore volume (Vmic).  相似文献   

7.
Predominant mesopores were added to pitch-based activated carbon fiber (0.7 nm of average pore width) by Ca(NO3)2-impregnated chemical activation. The influence of the concentration of calcium nitrate solution, reactivation temperature and reactivation time on the mesopore development of ACF were examined. The development of mesopores in the reactivated ACF was evidenced by an explicit hysteresis of N2 adsorption isotherm at 77 K. The pore volume ratio of mesopores to micropores reached to 3-4. The addition of predominant mesopores to ACF enhanced the liquid phase adsorption rate of methylene blue by more than 10 times.  相似文献   

8.
Preparation of activated carbon has been attempted using steam as the activating agent by microwave heating from Jatropha hull. The response surface methodology (RSM) technique is utilized to optimize the process conditions. The influences of the three major parameters, activation temperature, activation time and steam flow rate on the properties of activated carbon are investigated using analysis of variance (ANOVA), to identify the significant parameters. The optimum conditions for the preparation of activated carbon has been identified to be an activation temperature of 900 °C, activation time of 19 min and steam flow rate of 5 g/min. The optimum conditions resulted in an activated carbon with an iodine number of 988 mg/g and a yield of 16.56% respectively, while the BET surface area evaluated using nitrogen adsorption isotherm correspond to 1350 m2/g, with the pore volume of 1.07 cm3/g. The activated carbon is hetero porous with the micropore volume contributing to 40.8%.  相似文献   

9.
以半纤维素的主要模型物木聚糖为原料,在不添加其他粘结剂的条件下,采用磷酸活化法制备半纤维素基颗粒活性炭。讨论了浸渍比和炭活化工艺对活性炭吸附性能和孔隙结构的影响。研究结果表明:浸渍比的增加,有利于颗粒活性炭的比表面积、亚甲基蓝吸附值、强度、总孔容积和中孔容积的提高。随着炭活化温度的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积和微孔容积呈下降的趋势,强度呈上升趋势。N2吸附-脱附等温线和孔径分析表明,颗粒活性炭具有发达的微孔结构,炭活化温度的升高不利于孔隙结构的发达。  相似文献   

10.
以水稻秸秆为原料、氢氧化钠为活化剂制备活性炭。结果表明水稻秸杆活性炭的最佳工艺条件:碱碳比为2∶1,活化时间为60 min,活化温度为600℃,碳化温度为350℃,在此工艺条件下制备的水稻秸秆活性炭的亚甲基蓝吸附值和碘吸附值分别为29.2 mL/0.1 g和1 706.98 mg/g,制备出的活性炭吸附剂质量指标接近水质净化用活性炭标准。  相似文献   

11.
以气化稻壳炭(GRHC)为原料,KOH为活化剂制备活性炭,研究了不同活化温度和碱炭比对活性炭得率、比表面积、孔径分布以及碘值的影响.利用全自动气体吸附分析仪、X射线衍射仪、傅里叶变换红外光谱仪、扫描电镜等仪器对活性炭的理化性质进行表征,并通过吸附等温线、吸附动力学探讨其对甲基橙的吸附机制.结果表明:活化时间为1h时,随...  相似文献   

12.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

13.
Almond shell was used to prepare activated carbon using physical activation method, consisted of carbon dioxide (CO2) gasification. The effects of the preparation variables which were activation temperature, activation time and carbon dioxide flow rate on the adsorption capacity of iodine and methylene blue solution were investigated. The optimal activated carbon was obtained by these conditions as follows: 800 °C activation temperature, 100 cm3/min carbon dioxide flow rate and 120 min activation time. The characterization of carbon materials is performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 13C (CP/MAS and MAS) solid-state NMR, nitrogen adsorption (BET) and Boehm's titration method. For an industrial application, the optimal activated carbon was ammoxidated to improve its adsorption capacity toward total organic carbon from Tunisian industrial phosphoric acid. The influence of experimental parameters such as specific consumption, initial concentration, contact time, agitation speed and temperature on TOC removal was studied.  相似文献   

14.
为优化木质活性炭制备的工艺条件,以农林废弃物花生壳为原料,磷酸为主活化剂,硫酸为辅助活化剂,利用响应面模型分析磷酸质量分数、浸渍比(活化剂体积与花生壳质量比)、活化时间、活化温度对活性炭性能的影响。结果表明:通过Box-Behnken试验建立的二次多项式数学模型的P值都小于0.000 1,校正决定系数(R2)分别为0.990 2和0.997 8,变异系数(CV) < 10%,试验的可信度和精确度高,回归方程成立。通过二次回归模型得到磷酸-硫酸活化法制备花生壳基活性炭的最佳工艺条件为花生壳粉末1 g,磷酸质量分数57.7%,浸渍比2:1,活化时间117 min,活化温度550 ℃。在最佳工艺条件下,制备的活性炭亚甲基蓝吸附值为147.2 mg/g,碘吸附值1 022.03 mg/g,实际值与预测值接近,重复性好。利用磷酸-硫酸活化法制备的花生壳基活性炭的内部中小孔较发达,具有较强的吸附能力和脱附能力。  相似文献   

15.
Carbonaceous adsorbents with controllable pore sizes derived from carbonized pistachio shells (i.e., char) were prepared by the KOH activation and steam activation methods in this work. The pore properties including the BET surface area, pore volume, pore size distribution, and pore diameter of these activated carbons were characterized by the t-plot method based on N2 adsorption isotherms. Through varying the KOH/char ratios from 0.5 to 3, the KOH-activated carbons exhibited BET surface areas ranging from 731 to 1687 m2/g with a similar micropore content (80–92%). The carbons activated by steam at 830 °C for 2 h had a BET surface area of 821 m2/g with the micropore content of 42%. The micropore/total pore volume ratio (Vmicro/Vpore) and average pore size (Dpore) were independent of the KOH/char ratio, revealing that KOH activation is a powerful method in developing and controlling the number of micropores with a very similar pore size distribution. The adsorption equilibria and kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water on all activated carbons at 30 °C were investigated to demonstrate the fact that adsorption of organics is not only dependent upon the BET surface area but is also determined by the relative size between pores and molecules. The adsorption isotherms were subjected to the model fitting according to Langmuir and Freudlich equations. By comparing the projected area of adsorbates, the surface coverage of phenols is about 3.6 times of that of dyes (based on unit gram of activated carbon). The Elovich equation was found to suitably describe the adsorption process of all KOH-activated carbons while the adsorption behavior on the steam-activated carbon was reasonably fitted with the intraparticle diffusion model.  相似文献   

16.
《分离科学与技术》2012,47(6):886-895
Activated carbon prepared from palm shell by phosphoric acid impregnation, at significantly favorable experimental conditions is characterized for the porous nature and adsorption of methylene blue dye molecules. The activation is carried out using a 2-stage activation process with the activation in a self-generated atmosphere. An activation temperature of 500°C, with an activation time of 75 minutes using a phosphoric acid impregnation ratio of 3 has yielded an activated carbon having unique characteristics. An activated carbon with a yield of 48%, total pore volume of 1.9 cm3/g, surface area of 1956 m2/g, an average pore diameter of 3.8 nm, with the ratio of the mesopore to the total surface area in excess of 75% has been prepared. The activated carbon exhibits a high methylene blue equilibrium adsorption capacity of 438 mg/g with the adsorption isotherm increasing with an increase in the adsorption temperature. Among the various adsorption isotherm models, the Langmuir model is able to explain the adsorption process well, evidenced by the proximity of the model with the experimental data. Among the different kinetic models tested with the experimental kinetic data, a pseudo-second-order model is found to fit the experimental data with close proximity.  相似文献   

17.
杨晓霞  周安宁  曹振恒  张耀霞 《陕西化工》2012,(9):1637-1639,1660
在NaOH的催化作用下,通过水蒸气活化法制备了神府煤基活性炭和H2。探讨了NaOH/煤质量比、活化时间、活化温度等工艺条件对活性炭性能和H2产量的影响。结果表明,在活化温度为700℃,NaOH/煤质量比为0.5,单元活化时间为10 min的工艺条件下,可以制得碘值为635 mg/g,亚甲基蓝值为280 mg/g的活性炭,此时H2产量约17.9 mmol/g煤。  相似文献   

18.
探讨了活化温度、活化时间、水蒸气流量对再生后活性炭吸附性能和得率的影响,得到了最佳工艺条件:活化温度1 000℃,活化时间60 min,水蒸气流量2.23 g/min。该工艺条件下再生活性炭的碘吸附值1 174.37 mg/g,亚甲基蓝吸附值200 mL/g,得率为62.87%。再生后活性炭的吸附指标达到国家一级品的标准,其中亚甲基蓝吸附值是国家一级品标准的2.22倍。同时,测定了该活性炭氮吸附,通过BET计算了活性炭的比表面积,通过密度函数理论(DFT)表征了活性炭的孔结构。结果表明:该活性炭为微孔型,BET比表面积为1 254.51 m2/g,总孔容为0.592 6 mL/g。  相似文献   

19.
This article provides evidence that jatropha seed coat residues can be used as a carbon source for preparing activated carbons that have good adsorption properties for iodine and methylene blue. Activated carbons were prepared using three different methods of activation, physical, chemical, and physico-chemical, for a range of activation temperatures (600°, 700°, 800°, and 900°C) and activation hold times (1, 2, and 3 h). The highest BET surface area (1479 m2 g?1) and the highest iodine adsorption (1511 mg g?1) were obtained with physico-chemical activation at a temperature of 900°C and a hold time of 2 h. This activated carbon gave higher BET surface area and iodine adsorption than commercial activated carbon (1169.1 m2 g?1 and 1076 mg g?1). The activated carbons prepared by physico-chemical activation at 900°C and 2 h were then tested for adsorption of methylene blue at a range of concentrations of methylene blue (100, 200, 300, 400, and 500 mg L?1). It was found that a Langmuir isotherm gave a better fit (R 2 = 0.999) to the observed adsorptions than a Freundlich isotherm (R 2 = 0.884). For the adsorption kinetics, a pseudo-second-order model gave a better fit (R 2 > 0.998, Δq e  = 3.7%) than a pseudo-first-order model (R 2 ≈ 0.95, Δq e  = 85.6%). These results suggest that chemisorption is the rate-controlling step for the adsorption of methylene blue. The experimental results show that jatropha seed coat is a lignocellulosic waste precursor for preparation of activated carbon that is an alternative source for preparation of commercial-grade activated carbons.  相似文献   

20.
张蒙蒙  陈雄木  李领肖  赵风清 《化工进展》2018,37(12):4773-4781
利用微波与碱液的协同作用脱除废菌渣中的含氮物质,脱氮后的滤渣用于制备活性炭,旨在减少氮氧化物排放,实现废菌渣的清洁化利用。分别以碘吸附值和亚甲基蓝吸附值为目标,采用响应面法(Box-Behnken)得到两种孔径活性炭的定向制备条件。①微孔活性炭:活化时间1h,活化温度425℃,ZnCl2质量分数20%,浸渍比1:3.85。产品的碘吸附值为884.76mg/g,平均孔径为1.83nm。②中孔活性炭:活化时间2h,活化温度600℃,ZnCl2质量分数30%,浸渍比1:4。产品的亚甲基蓝吸附值为448.65mg/g,平均孔径为3.15nm。利用扫描电镜、红外光谱等手段对活性炭结构进行表征,发现在活性炭表面形成了大量的表面官能团,包括羧基、羟基、内酯基等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号