首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Ti, W, Mo, V)(C, N) nanocomposite powders with globular-like particle of ∼10–100 nm were synthesized by a novel method, namely carbothermal reduction–nitridation (CRN) of complex oxide–carbon mixture, which was made initially from salt solution containing titanium, tungsten, molybdenum, vanadium and carbon elements by air drying and subsequent calcining at 300 °C for 0.5 h. Phase composition of reaction products was discussed by X-ray diffraction (XRD), and microstructure of the calcined powders and final products was studied by scanning electron microscopy (SEM) and transmission electron microscope (TEM), respectively. The results show that the synthesizing temperature of (Ti, W, Mo, V)(C, N) powders was reduced greatly by the novel precursor method. Thus, the preparation of (Ti, 15W, 5Mo, 0.2V)(C, N) is at only 1200 °C for 2 h. The lowering of synthesizing temperature is mainly due to the homogeneous chemical composition of the complex oxide–carbon mixture and its unusual honeycombed structure.  相似文献   

2.
A large number of SiC nanowires were fabricated by a simple catalyst-free method using silicon powders and expandable graphite as raw materials. Digital camera, X-ray diffractometer, Fourier transform infrared spectrometer, field-emission scanning electron microscopy and transmission electron microscopy demonstrate that a large number of loose products were obtained in graphite crucible. The products are composed of single crystalline 3C-SiC nanowires with lengths up to several tens of micrometers and diameters of 20-60 nm. The vapor-solid mechanism was proposed to interpret the growth procedure of SiC nanowires. The expandable graphite as carbon source can provide enough growth space for nanowires, which is helpful to improve the yield of SiC nanowires. The simple method provides a promising candidate for industrial fabrication of SiC nanowires.  相似文献   

3.
Europium activated yttrium oxide phosphors were prepared by reagent simultaneous addition technique, using oxalic acid as precipitating reagent. The aim of the paper is to establish the flux influence and thermal regime on photoluminescence and morpho-structural characteristics of phosphor powders. In this respect different mineralising agents such as sodium/lithium carbonate, sodium tetraborate ans sodium pyrophosphate were used during the thermal synthesis stage. Thermal analysis, X-ray diffraction, scanning electron microscopy, infrared spectroscopy and photoluminescence measurements were used to investigate precursor and phosphor powders. The correlation between the phosphor properties and precursor quality enabled us to select the optimal synthesis conditions.  相似文献   

4.
Nano-WC powders with granular particle of ~ 20-80 nm were synthesized by a new precursor method, namely carbothermal reduction-carburization of amorphous WO3-C mixture, which was made initially from salt solution containing tungsten and carbon elements by air drying and subsequent calcining at 400 °C for 1 h. The reaction products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the synthesizing temperature of WC powders was reduced greatly by the novel precursor method. Thus, the preparation of the single-phase nano-WC powders is at only 1000 °C for 2 h. The lowering of synthesizing temperature is mainly due to the homogeneous chemical composition of the amorphous oxide-carbon mixture.  相似文献   

5.
V2O3 and VN nanocrystals have been synthesized by the decomposition of the precursor NH4VO3 and following nitridation in an autoclave with metallic Na flux at 450–600 °C. X-ray powder diffraction (XRD) recorded the evolution process of the reaction from precursor NH4VO3 to hexagonal V2O3 and then to NaCl-type VN. In addition, the products were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).  相似文献   

6.
A new series of photocatalysts, Bi2Zn2/3−xCuxTa4/3O7 (Cu-β-BZT) crystals with pyrochlore structure were synthesized by the method of solid-state reaction (SSR). With small amount of Cu doped (0.01 ≤ x ≤ 0.04), the phase structure was kept to be monoclinic pyrochlore as pure β-BZT. The diffuse reflectance spectrum of Cu-β-BZT samples showed a red shift. The method of Cu doping enhanced the photocatalytic activity, and when the value of x is 0.03, the sample showed the highest activity, which is about 10 times higher than that of pure β-BZT under UV light. Especially, the samples of Cu-β-BZT showed photocatalytic activities under visible light irradiation (λ > 400 nm). Effects of the Cu doped on the photocatalytic activities of the catalysts were also discussed.  相似文献   

7.
Nanocrystalline boron nitride (BN) was synthesized via a simple thermal decomposition-nitridation route by the reaction of hydrated ammonium tetraborate (NH4HB4O7·3H2O) and metallic magnesium powders in an autoclave at 650 °C. The crystal phase, morphology, grain size, and chemical composition of the as-prepared products were characterized in detail by X-ray powder diffraction (XRD), energy dispersion spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The products were also studied by FT-IR and the thermogravimetric analysis (TGA). Results revealed that the as-synthesized nanocrystalline were h-BN, and they had diameters within 100 nm. They had good thermal stability and oxidation resistance in high temperature.  相似文献   

8.
Ultrafine (Ti, W, Mo, V)(C, N)–Ni composite powders with globular-like particles of 50–300 nm were synthesized at static nitrogen pressure from oxides by a simple and cost-effective route which combines traditional low-energy milling plus carbothermal reduction–nitridation (CRN) techniques. Reaction path of the (Ti, W, Mo, V)(C, N)–Ni system was discussed by X-ray diffraction (XRD) and thermogravimetry–differential scanning calorimetry (TG–DSC), and microstructure of the milled powders and final products was studied by scanning electron microscopy (SEM) and transmission electron microscope (TEM), respectively. The results show that CRN reaction has been enhanced by nano-TiO2 and nano-carbon powders. Thus, the preparation of (Ti, 15W, 5Mo, 0.2V)(C, N)–20Ni is at only 1300 °C for 1 h. During synthesizing reaction, Ni solid solution phase forms at about 700 °C and reduction–carbonization of WO2 and MoO2 occurs below 900 °C. The reactions of TiO2 → Ti3O5, Ti3O5 → Ti(C, O) and Ti(C, O) → Ti(C, N) take place at about 930 °C, 1203 °C and 1244 °C, respectively.  相似文献   

9.
Nano-crystalline vanadium disilicide was successfully synthesized using vanadium tetrachloride and silicon as starting materials via reduction–silication route at 650 °C in the molten salt solution of magnesium chloride and sodium chloride in an autoclave. X-ray powder diffraction patterns indicated that the product was hexagonal VSi2 (a=4.572 Å, c=6.372 Å). Transmission electron microscopy images showed that the particle size of the product was in the range of 40–60 nm in diameter. There was a strong absorption peak at 271 nm in the UV-Vis absorption spectra. The oxidation of nano-crystalline VSi2 began to proceed at the temperature of 400 °C in air. But the product had high thermal oxidation stability below 1000 °C. It can be used as an antioxidation coating material.  相似文献   

10.
Nanosized piezoelectric ceramics for vibration sensor applications have been prepared by mixing the ferroelectric PLZT (8:60:40) with variable doping fractions of trivalent aluminium ion (Al3+). Samples have been prepared through a standard sol–gel route. X-ray diffraction and scanning electron microscopy (SEM) have been used to determine the phase and morphological modifications. Transmission electron microscopy (TEM) studies reveal the microstructure with nanosized well-dispersed homogeneous spherical particles. The vibrational infra-red (IR) spectroscopy record is taken to locate the position of the doping Al3+ ion. Using electrical impedance spectroscopy, the resonance and anti-resonance frequencies of the Al modified PLZT system have been determined and analysed. Al addition in PLZT has left a profound effect in its dielectric and piezoelectric properties. An interpretation of the role of Al addition is proposed in terms of structure modification. The sensing power of the investigated material was found useful for the vibration control of a cantilever beam.  相似文献   

11.
M-phase LiNb0.6Ti0.5O3 (LNT) plate-like particles with large anisometric shape were firstly fabricated by molten salt synthesis (MSS) method in LiCl flux. Effects of reaction temperature, holding time and the weight ratio of LiCl salt to the original powders on the phase structure and morphology of the synthesized particles were investigated. The LiNb0.6Ti0.5O3 powders generally showed a multi-layer structure, exhibiting irregular hexagonal or triangle morphology. The reaction temperature showed a strong influence on the particle growth process, and pure LNT particles are obtained at 950 °C. Further increasing the reaction temperature and holding time could increase the average size of the particles. It revealed that the thickness of the plat-like particles was increased as the contents of the chloride salts increased. The synthesis process, the relation between crystal structure and morphology of particles were also discussed.  相似文献   

12.
Thin films of magnesia were deposited on various substrates using plasma-assisted liquid injection chemical vapor deposition with volatile Mg(tmhd)2·2H2O (1) (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedione). The precursor complexes, Mg2(tmhd)4·(2), and Mg(tmhd)2·pmdien (3) (pmdien; N,N,N′,N″,N″-pentamethyldiethylenetriamine) were prepared from Mg(tmhd)2·2H2O (1). The temperature dependence equilibrium vapor pressure (pe)T data yielded a straight line when log pe was plotted against reciprocal temperature in the range of 360–475 K, leading to standard enthalpy of vaporization (ΔvapH°) values of 59 ± 1 and 67 ± 2 kJ mol 1 for (2) and (3) respectively. Thin films of magnesium oxide were grown at 773 K using complex (1) on various substrate materials. These films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray for their composition and morphology.  相似文献   

13.
The effect of carbon source on the carbothermal reduction-nitridation during synthesizing (Ti, W, Mo, V)(C, N) nanocrystalline powders was investigated. For a systematic comparison, activated carbon, graphite and two kinds of carbon black powder were used as reducing agents in this study. Ultrafine (Ti, W, Mo, V)(C, N) powders with a particle size of ~ 200-500 nm have been produced at 1450 °C for 2 h by using nanosized carbon black source with small particle size. The presence of phases in the reaction products was characterized with X-ray diffraction (XRD) and the microstructure of carbon source powders and final products was studied by scanning electron microscopy (SEM). The results show that the formation of the Ti(C, N) phase is strongly dependent on the particle size of carbon source powders, and the synthesizing temperature of the Ti(C, N) phase decreases significantly from 1750 °C to 1300 °C by using nanosized carbon black, as compared with micron graphite. In addition, activated carbon with a particle size of 5-50 μm does not favor the dissolution of tungsten or molybdenum carbides into Ti(C, N) despite its large specific surface area.  相似文献   

14.
As one of the important metal-borides, calcium hexaboride (CaB6) is applied in refractory materials, metal deoxidant, neutron absorbent, wear-resisting agent and functional ceramic materials. Generally, CaB6 is produced from B4C or B2O3 which is obtained at high temperature and high cost. In this study, the CaB6 powder was prepared through combustion synthesis by using calcium hexaborate and magnesium as starting materials. The calculated adiabatic temperature of CaB6O10–Mg system reached 2406.69 K. The XRD analyses of combustion products showed that there existed a small amount of Mg3B2O6 and Ca3(BO3)2 besides CaB6 and MgO. The XRD patterns of products leached by HCl indicated the major part of the leached sample is comprised by CaB6, showing that MgO and by-products were efficiently leached out. In addition, the technological conditions for combustion synthesis were investigated. It is resulted that larger particle size of CaB6O10 and higher compacting pressure is beneficial to the production of CaB6.  相似文献   

15.
Single-crystalline Na0.5Bi0.5TiO3 (NBT) nanowires, with diameters of 100 nm and lengths of about 4 μm, were synthesized by using a simple hydrothermal method. Phase composition, morphology and microstructure of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The effects of reaction temperature and reaction time on precipitation of the NBT nanowires were investigated. It was found that reaction time significantly influenced the growth behavior of the powders in the hydrothermal system. Based on the experimental results, the one-dimensional (1D) growth mechanism of the NBT was governed by a dissolution-recrystallization mechanism. NBT ceramics derived from the nanowires showed typical characteristics of relaxor ferroelectrics, with diffuseness exponent γ of as high as 1.73.  相似文献   

16.
The composition and morphology of electrodeposited Zn-Co and Zn-Co-Fe alloy coatings are studied by a variety of complementary analytical techniques. Morphology of the alloy deposits is shown to change significantly with Co content in the alloy coating. An increase in the Co content in the range of 0.7-9 wt.% Co in Zn-Co and Zn-Co-Fe alloys results in a change in grain shape from angular to nodular and a further increase up to 10 wt.% Co corresponds to a characteristic growth mode. In the range of 10-29 wt.% of Co, the deposit contains two types of grains, i.e. one with low Co content (5-7 wt.%) and another with higher Co content (i.e. 15-35 wt.%). Zn-Co and Zn-Co-Fe alloys with Co contents of or higher than 32 wt.% Co show a homogeneous structure, which can be considered to be nanocrystalline in nature. The presence of two or more phases is not desired in terms of enhanced local corrosion by (micro-)galvanic coupling of phases while the single phase or nanocrystalline coatings provide good corrosion protection properties.  相似文献   

17.
The aim of the work was to produce the amorphous/crystalline composite with uniform distribution of fine crystalline soft phase. Silver–copper–titanium Ag20Cu30Ti50 alloy was prepared using 99.95 wt% Ag, 99.95 wt% Cu, 99.95 wt% Ti that were arc-melted in argon atmosphere. Then the alloy was melt spun on a copper wheel with linear velocity of 33 m/s. Investigation of the microstructure for both arc-melt massive sample and melt-spun ribbons was performed with use of scanning electron microscope (SEM) with EDS, light microscope (LM) and X-ray diffraction. The thermal stability was evaluated by differential scanning calorimetry (DSC). The properties such as Young modulus and Vickers hardness number before and after crystallization of the amorphous matrix were measured with use of nanoindenter. The microstructure was investigated by transmission electron microscope (TEM). It was found, that the alloy has a tendency for separation within the liquid state due to the miscibility gap which resulted in segregation into Ti–Cu–Ag matrix and Ag-base spherical particles after arc-melting. During rapid cooling through the melt spinning the Ag20Cu30Ti50 alloy formed an amorphous/crystalline composite of fcc silver-rich spherical particles within the amorphous Ti–Cu–Ag matrix.  相似文献   

18.
Low dielectric ceramics in the Al2W3−xMoxO12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al2MoxW3−xO12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range −41 to −72 ppm/°C.  相似文献   

19.
A simple hydrothermal route is demonstrated for the synthesis of nickel ferrite nanocrystals, NiFe2O4, using cetyltrimethylammonium bromide (CTAB) as the surfactant and NH3 and NaOH as hydrolyzing agents. Synthesized materials have been characterized by XRD, FTIR, ESR, and TEM techniques. It was found that crystallization in both hydrolyzing agent led to nanometric in size. Average particle size of prepared samples was calculated from TEM micrographs and varied significantly between samples prepared using different hydrolyzing agents; it was 12 nm when conc. NH3 was used and 50 nm when 2 M NaOH was used. Crystallite size obtained using Scherrer equation agreed well with the TEM observations with the respective values of 15 and 55 nm. ESR analysis showed single broad bands which might indicate the phase homogeneity of the materials. Furthermore, linewidths were observed to differ due to the difference in magnetization that depends on the particle size; NiFe2O4 sample hydrolysed with NH3 has a larger linewidth revealing its smaller particle size as confirmed by XRD and TEM techniques.  相似文献   

20.
Mullite whiskers were prepared from silica fume in molten Al2(SO4)3-Na2SO4 mixture salts at low temperatures. The resulting mullite whiskers, as well as the nucleation and growth mechanism in the molten environment, have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TG-DTA) techniques. XRD studies showed that the materials obtained were orthorhombic mullite. SEM, TEM and HRTEM results revealed that the mullite whiskers were single crystal fibers with diameters ranging from 30 to 150 nm and lengths of over several microns. According to thermodynamic analysis, mullite phase might be spontaneously formed in molten salts as the temperature reached the decomposition temperature of aluminum sulfate (1023 K). Moreover, the mullite crystals grew along [1 1 1] crystal plane firstly and developed into fibrous microstructure finally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号